The properties of Mach stems in hypersonic corner flow induced by Mach interaction over 3D intersecting wedges were studied theoretically and numerically.A new method called "spatial dimension reduction" was used to...The properties of Mach stems in hypersonic corner flow induced by Mach interaction over 3D intersecting wedges were studied theoretically and numerically.A new method called "spatial dimension reduction" was used to analyze theoretically the location and Mach number behind Mach stems. By using this approach, the problem of 3D steady shock/shock interaction over 3D intersecting wedges was transformed into a 2D moving one on cross sections, which can be solved by shock-polar theory and shock dynamics theory. The properties of Mach interaction over 3D intersecting wedges can be analyzed with the new method,including pressure, temperature, density in the vicinity of triple points, location, and Mach number behind Mach stems.Theoretical results were compared with numerical results,and good agreement was obtained. Also, the influence of Mach number and wedge angle on the properties of a 3D Mach stem was studied.展开更多
基金supported by the National Natural Science Foundation of China (Grants 11372333, 90916028)
文摘The properties of Mach stems in hypersonic corner flow induced by Mach interaction over 3D intersecting wedges were studied theoretically and numerically.A new method called "spatial dimension reduction" was used to analyze theoretically the location and Mach number behind Mach stems. By using this approach, the problem of 3D steady shock/shock interaction over 3D intersecting wedges was transformed into a 2D moving one on cross sections, which can be solved by shock-polar theory and shock dynamics theory. The properties of Mach interaction over 3D intersecting wedges can be analyzed with the new method,including pressure, temperature, density in the vicinity of triple points, location, and Mach number behind Mach stems.Theoretical results were compared with numerical results,and good agreement was obtained. Also, the influence of Mach number and wedge angle on the properties of a 3D Mach stem was studied.