With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable ener...With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable energy consumption problem in power systems.This paper proposes a two-layer active power optimization model based on industrial flexible loads for power grid partitioning,aiming at improving the line over-limit problem caused by renewable energy consumption in power grids with high proportion of renewable energy,and achieving the safe,stable and economical operation of power grids.Firstly,according to the evaluation index of renewable energy consumption characteristics of line active power,the power grid is divided into several partitions,and the interzone tie lines are taken as the optimization objects.Then,on the basis of partitioning,a two-layer active power optimization model considering the power constraints of industrial flexible loads is established.The upper-layer model optimizes the planned power of the inter-zone tie lines under the constraint of the minimum peak-valley difference within a day;the lower-layer model optimizes the regional source-load dispatching plan of each resource in each partition under the constraint of theminimumoperation cost of the partition,so as to reduce the line overlimit phenomenon caused by renewable energy consumption and save the electricity cost of industrial flexible loads.Finally,through simulation experiments,it is verified that the proposed model can effectively mobilize industrial flexible loads to participate in power grid operation and improve the economic stability of power grid.展开更多
When a line failure occurs in a power grid, a load transfer is implemented to reconfigure the network by changingthe states of tie-switches and load demands. Computation speed is one of the major performance indicator...When a line failure occurs in a power grid, a load transfer is implemented to reconfigure the network by changingthe states of tie-switches and load demands. Computation speed is one of the major performance indicators inpower grid load transfer, as a fast load transfer model can greatly reduce the economic loss of post-fault powergrids. In this study, a reinforcement learning method is developed based on a deep deterministic policy gradient.The tedious training process of the reinforcement learning model can be conducted offline, so the model showssatisfactory performance in real-time operation, indicating that it is suitable for fast load transfer. Consideringthat the reinforcement learning model performs poorly in satisfying safety constraints, a safe action-correctionframework is proposed to modify the learning model. In the framework, the action of load shedding is correctedaccording to sensitivity analysis results under a small discrete increment so as to match the constraints of line flowlimits. The results of case studies indicate that the proposed method is practical for fast and safe power grid loadtransfer.展开更多
MigroGrid(MG)has emerged to resolve the growing demand for energy.But because of its inconsistent output,it can result in various power quality(PQ)issues.PQ is a problem that is becoming more and more important for th...MigroGrid(MG)has emerged to resolve the growing demand for energy.But because of its inconsistent output,it can result in various power quality(PQ)issues.PQ is a problem that is becoming more and more important for the reliability of power systems that use renewable energy sources.Similarly,the employment of nonlinear loads will introduce harmonics into the system and,as a result,cause distortions in the current and voltage waveforms as well as low power quality issues in the supply system.Thus,this research focuses on power quality enhancement in the MG using hybrid shunt filters.However,the performance of the filter mainly depends upon the design,and stability of the controller.The efficiency of the proposed filter is enhanced by incorporating an enhanced adaptive fuzzy neural network(AFNN)controller.The performance of the proposed topology is examined in a MATLAB/Simulink environment,and experimental findings are provided to validate the effectiveness of this approach.Further,the results of the proposed controller are compared with Adaptive Fuzzy Back-Stepping(AFBS)and Adaptive Fuzzy Sliding(AFS)to prove its superiority over power quality improvement in MG.From the analysis,it can be observed that the proposed system reduces the total harmonic distortion by about 1.8%,which is less than the acceptable limit standard.展开更多
Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented ...Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality.展开更多
The reasonability of the adopted capacity load ratio numerical value in urban power grid planning determines the economy of planning level yearly power grid.Too large capacity load ratio will result in the increasing ...The reasonability of the adopted capacity load ratio numerical value in urban power grid planning determines the economy of planning level yearly power grid.Too large capacity load ratio will result in the increasing investment in the early period of power grid construction, however, too small capacity load ratio will make the power grid have poor adaptability, affecting the power supply. Reasonably determining the adopted regional power grid capacity load ratio quantitative numerical value in planning has a strong guiding significance for constructing reliable and economic power grid and preventing power grid from excessive advance or lagging behind the load development. This paper, through the statistics and analysis of a certain regional power grid 2010-2012 three years' power grid daily load characteristics and the investment benefit evaluation of three years' 220KV power grid individual project, makes a preliminary analysis and puts forwards the specific advice on the reasonable values of power ~rid 35-220KV power transformation capacity load ratio.展开更多
The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in re...The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in remote areas.So far,Solar Home Systems(SHS)have mostly been applied to increase electricity access in rural areas.SHSs have continuous constraints to meet electricity demands and cannot run income-generating activities.The current research presents the feasibility study of electrifying Remera village with the smart microgrid as a case study.The renewable energy resources available in Remera are the key sources of electricity in that village.The generation capacity is estimated based on the load profile.The microgrid configurations are simulated with HOMER,and the genetic algorithm is used to analyze the optimum cost.By analyzing the impact of operation and maintenance costs,the results show that the absence of subsidies increases the levelized cost of electricity(COE)five times greater than the electricity price from the public utility.The microgrid made up of PV,diesel generator,and batteries proved to be the most viable solution and ensured continuous power supply to customers.By considering the subsidies,COE reaches 0.186$/kWh,a competitive price with electricity from public utilities in Rwanda.展开更多
With the problem of global energy shortage and people’s awareness of energy saving, electric vehicles receive world-wide attention from government to business. Then the load of the power grid will rapidly increase in...With the problem of global energy shortage and people’s awareness of energy saving, electric vehicles receive world-wide attention from government to business. Then the load of the power grid will rapidly increase in a short term, and a series of effects will bring to the power grid operation, management, production and planning. With the large-scale penetration of electric vehicles and distributed energy gradually increased, if they can be effectively controlled and regulated, they can play the roles of load shifting, stabling intermittent renewable energy sources, providing emergency power supply and so on. Otherwise they may have a negative impact, which calls for a good interaction of electric vehicles and power grid. Analyzed the status of the current study on the interaction between the electric vehicles and the power grid, this paper builds the material basis, information architecture and the corresponding control method for the interaction from the aspect of the energy and information exchanging, and then discusses the key issues, which makes a useful exploration for the further research.展开更多
This paper describes the performance, generated power flow distribution and redistribution for each power plant on the grid based on adapting load and weather forecasting data. Both load forecasting and weather foreca...This paper describes the performance, generated power flow distribution and redistribution for each power plant on the grid based on adapting load and weather forecasting data. Both load forecasting and weather forecasting are used for collecting predicting data which are required for optimizing the performance of the grid. The stability of each power systems on the grid highly affected by load varying, and with the presence of the wind power systems on the grid, the grid will be more exposed to lowering its performance and increase the instability to other power systems on the gird. This is because of the intermittence behavior of the generated power from wind turbines as they depend on the wind speed which is varying all the time. However, with a good prediction of the wind speed, a close to the actual power of the wind can be determined. Furthermore, with knowing the load characteristics in advance, the new load curve can be determined after being subtracted from the wind power. Thus, with having the knowledge of the new load curve, and data that collected from SACADA system of the status of all power plants, the power optimization, load distribution and redistribution of the power flows between power plants can be successfully achieved. That is, the improvement of performance, more reliable, and more stable power grid.展开更多
Lately,in modern smart power grids,energy demand for accurate forecast of electricity is gaining attention,with increased interest of research.This is due to the fact that a good energy demand forecast would lead to p...Lately,in modern smart power grids,energy demand for accurate forecast of electricity is gaining attention,with increased interest of research.This is due to the fact that a good energy demand forecast would lead to proper responses for electricity demand.In addition,proper energy demand forecast would ensure efficient planning of the electricity industry and is critical in the scheduling of the power grid capacity and management of the entire power network.As most power systems are been deregulated and with the rapid introduction and development of smart-metering technologies in Oman,new opportunities may arise considering the efficiency and reliability of the power system;like price-based demand response programs.These programs could either be a large scale for household,commercial or industrial users.However,excellent demand forecasting models are crucial for the deployment of these smart metering in the power grid based on good knowledge of the electricity market structure.Consequently,in this paper,an overview of the Oman regulatory regime,financial mechanism,price control,and distribution system security standard were presented.More so,the energy demand forecast in Oman was analysed,using the econometric model to forecasts its energy peak demand.The energy econometric analysis in this study describes the relationship between the growth of historical electricity consumption and macro-economic parameters(by region,and by tariff),considering a case study of Mazoon Electricity Distribution Company(MZEC),which is one of the major power distribution companies in Oman,for effective energy demand in the power grid.展开更多
With a further increase in energy flexibility for customers,short-term load forecasting is essential to provide benchmarks for economic dispatch and real-time alerts in power grids.The electrical load series exhibit p...With a further increase in energy flexibility for customers,short-term load forecasting is essential to provide benchmarks for economic dispatch and real-time alerts in power grids.The electrical load series exhibit periodic patterns and share high associations with metrological data.However,current studies have merely focused on point-wise models and failed to sufficiently investigate the periodic patterns of load series,which hinders the further improvement of short-term load forecasting accuracy.Therefore,this paper improved Autoformer to extract the periodic patterns of load series and learn a representative feature from deep decomposition and reconstruction.In addition,a novel multi-factor attention mechanism was proposed to handle multi-source metrological and numerical weather prediction data and thus correct the forecasted electrical load.The paper also compared the proposed model with various competitive models.As the experimental results reveal,the proposed model outperforms the benchmark models and maintains stability on various types of load consumers.展开更多
With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to th...With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to the severe wind power curtailment issue, the characteristics of interactive load are studied upon the traditional day-ahead dispatch model to mitigate the influence of wind power fluctuation. A multi-objective optimal dispatch model with the minimum operating cost and power losses is built. Optimal power flow distribution is available when both generation and demand side participate in the resource allocation. The quantum particle swarm optimization (QPSO) algorithm is applied to convert multi-objective optimization problem into single objective optimization problem. The simulation results of IEEE 30-bus system verify that the proposed method can effectively reduce the operating cost and grid loss simultaneously enhancing the consumption of wind power.展开更多
In the last few decades, in the world and also in the European Union, considerable resources had been invested in the rapid development of renewable energy sources and distributed generation in general. At the same ti...In the last few decades, in the world and also in the European Union, considerable resources had been invested in the rapid development of renewable energy sources and distributed generation in general. At the same time, power consumption is continuously increasing, and consumers are becoming more complex, which ultimately requires new investments in the distribution network. Concept of smart grids is generally accepted as a possible solution. Smart grid is a concept with many elements, where monitoring and control of every element in the chain of production, transmission, distribution and final consumption enable much more efficient delivery and use of electricity. One of the elements of smart grid efficiency is the ability of real-time demand-supply balancing. This balancing is carried out by monitoring of consumption and redistribution of electricity among individual end users, according to their needs. The aim of this paper is creating algorithm for real-time load management using power measurements. Algorithm for real-time load management at the ETFOS (Faculty of Electrical Engineering in Osijek), Croatia is created based on measurements of photovoltaic power plant production, the power consumption of air conditioning system and the faculty building total electricity consumption. Expected result of real-time re-dispatching of air conditioners consumption, depending on the level of electricity production in photovoltaic power plant is decreasing peak demand of the faculty.展开更多
A distribution grid is generally characterized by a high R/X (resistance/reactance) ratio and it is radial in nature. By design, a distribution grid system is not an active network, and it is normally designed in su...A distribution grid is generally characterized by a high R/X (resistance/reactance) ratio and it is radial in nature. By design, a distribution grid system is not an active network, and it is normally designed in such a way that power flows from transmission system via distribution system to consumers. But in a situation when wind turbines are connected to the distribution grid, the power source will change from one source to two sources, in this case, network is said to be active. This may probably have an impact on the distribution grid to whenever the wind turbine is connected. The best way to know the impact of wind turbine on the distribution grid in question is by carrying out load flow analysis on that system with and without the connection of wind turbines. Two major fundamental calculations: the steady-state voltage variation at the PCC (point of common coupling) and the calculation of short-circuit power of the grid system at the POC (point of connection) are necessary before carrying out the load flow study on the distribution grid. This paper, therefore, considers these pre-load flow calculations that are necessary before carrying out load flow study on the test distribution grid. These calculations are carded out on a test distribution system.展开更多
Power grids,due to their lack of network redundancy and structural interdependence,are particularly vulnerable to cascading failures,a phenomenon where a few failed nodes—having their loads exceeding their capacities...Power grids,due to their lack of network redundancy and structural interdependence,are particularly vulnerable to cascading failures,a phenomenon where a few failed nodes—having their loads exceeding their capacities—can trigger a widespread collapse of all nodes.Here,we extend the cascading failure(Motter-Lai)model to a more realistic perspective,where each node’s load capacity is determined to be nonlinearly correlated with the node’s centrality.Our analysis encompasses a range of synthetic networks featuring small-world or scale-free properties,as well as real-world network configurations like the IEEE bus systems and the US power grid.We find that fine-tuning this nonlinear relationship can significantly enhance a network’s robustness against cascading failures when the network nodes are under attack.Additionally,the selection of initial nodes and the attack strategies also impact overall network robustness.Our findings offer valuable insights for improving the safety and resilience of power grids,bringing us closer to understanding cascading failures in a more realistic context.展开更多
During this decade,many countries have experienced natural and accidental disasters,such as typhoons,floods,earthquakes,and nuclear plant accidents,causing catastrophic damage to infrastructures.Since the end of 2019,...During this decade,many countries have experienced natural and accidental disasters,such as typhoons,floods,earthquakes,and nuclear plant accidents,causing catastrophic damage to infrastructures.Since the end of 2019,all countries of the world are struggling with the COVID-19 and pursuing countermeasures,including inoculation of vaccine,and changes in our lifestyle and social structures.All these experiences have made the residents in the affected regions keenly aware of the need for new infrastructures that are resilient and autonomous,so that vital lifelines are secured during calamities.A paradigm shift has been taking place toward reorganizing the energy social service management in many countries,including Japan,by effective use of sustainable energy and new supply schemes.However,such new power sources and supply schemes would affect the power grid through intermittency of power output and the deterioration of power quality and service.Therefore,new social infrastructures and novel management systems to supply energy and social service will be required.In this paper,user-friendly design,operation and control assist tools for resilient microgrids and autonomous communities are proposed and applied to the standard microgrid to verify its effectiveness and performance.展开更多
Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benef...Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benefits of seawater desalination, the desalination load can be combined with renewable energy sources such as solar energy, wind energy, and ocean energy or with the power grid to ensure its effective regulation. Utilizing energy internet(EI) technology, energy balance demand of the regional power grid, and coordinated control between coastal multi-source multi-load and regional distribution network with desalination load is reviewed herein. Several key technologies, including coordinated control of coastal multi-source multi-load system with seawater desalination load, flexible interaction between seawater desalination and regional distribution network, and combined control of coastal multi-source multi-load storage system with seawater desalination load, are discussed in detail. Adoption of the flexible interaction between seawater desalination and regional distribution networks is beneficial for solving water resource problems, improving the ability to dissipate distributed renewable energy, balancing and increasing grid loads, improving the safety and economy of coastal power grids, and achieving coordinated and comprehensive application of power grids, renewable energy sources, and coastal loads.展开更多
Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactio...Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactions.STLF ranges from an hour ahead prediction to a day ahead prediction. Variouselectric load forecasting methods have been used in literature for electricitygeneration planning to meet future load demand. A perfect balance regardinggeneration and utilization is still lacking to avoid extra generation and misusageof electric load. Therefore, this paper utilizes Levenberg–Marquardt(LM) based Artificial Neural Network (ANN) technique to forecast theshort-term electricity load for smart grids in a much better, more precise,and more accurate manner. For proper load forecasting, we take the mostcritical weather parameters along with historical load data in the form of timeseries grouped into seasons, i.e., winter and summer. Further, the presentedmodel deals with each season’s load data by splitting it into weekdays andweekends. The historical load data of three years have been used to forecastweek-ahead and day-ahead load demand after every thirty minutes makingload forecast for a very short period. The proposed model is optimized usingthe Levenberg-Marquardt backpropagation algorithm to achieve results withcomparable statistics. Mean Absolute Percent Error (MAPE), Root MeanSquared Error (RMSE), R2, and R are used to evaluate the model. Comparedwith other recent machine learning-based mechanisms, our model presentsthe best experimental results with MAPE and R2 scores of 1.3 and 0.99,respectively. The results prove that the proposed LM-based ANN modelperforms much better in accuracy and has the lowest error rates as comparedto existing work.展开更多
基金supported by State Grid Corporation of China Project“Research and Application of Key Technologies for Active Power Control in Regional Power Grid with High Penetration of Distributed Renewable Generation”(5108-202316044A-1-1-ZN).
文摘With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable energy consumption problem in power systems.This paper proposes a two-layer active power optimization model based on industrial flexible loads for power grid partitioning,aiming at improving the line over-limit problem caused by renewable energy consumption in power grids with high proportion of renewable energy,and achieving the safe,stable and economical operation of power grids.Firstly,according to the evaluation index of renewable energy consumption characteristics of line active power,the power grid is divided into several partitions,and the interzone tie lines are taken as the optimization objects.Then,on the basis of partitioning,a two-layer active power optimization model considering the power constraints of industrial flexible loads is established.The upper-layer model optimizes the planned power of the inter-zone tie lines under the constraint of the minimum peak-valley difference within a day;the lower-layer model optimizes the regional source-load dispatching plan of each resource in each partition under the constraint of theminimumoperation cost of the partition,so as to reduce the line overlimit phenomenon caused by renewable energy consumption and save the electricity cost of industrial flexible loads.Finally,through simulation experiments,it is verified that the proposed model can effectively mobilize industrial flexible loads to participate in power grid operation and improve the economic stability of power grid.
基金the Incubation Project of State Grid Jiangsu Corporation of China“Construction and Application of Intelligent Load Transferring Platform for Active Distribution Networks”(JF2023031).
文摘When a line failure occurs in a power grid, a load transfer is implemented to reconfigure the network by changingthe states of tie-switches and load demands. Computation speed is one of the major performance indicators inpower grid load transfer, as a fast load transfer model can greatly reduce the economic loss of post-fault powergrids. In this study, a reinforcement learning method is developed based on a deep deterministic policy gradient.The tedious training process of the reinforcement learning model can be conducted offline, so the model showssatisfactory performance in real-time operation, indicating that it is suitable for fast load transfer. Consideringthat the reinforcement learning model performs poorly in satisfying safety constraints, a safe action-correctionframework is proposed to modify the learning model. In the framework, the action of load shedding is correctedaccording to sensitivity analysis results under a small discrete increment so as to match the constraints of line flowlimits. The results of case studies indicate that the proposed method is practical for fast and safe power grid loadtransfer.
文摘MigroGrid(MG)has emerged to resolve the growing demand for energy.But because of its inconsistent output,it can result in various power quality(PQ)issues.PQ is a problem that is becoming more and more important for the reliability of power systems that use renewable energy sources.Similarly,the employment of nonlinear loads will introduce harmonics into the system and,as a result,cause distortions in the current and voltage waveforms as well as low power quality issues in the supply system.Thus,this research focuses on power quality enhancement in the MG using hybrid shunt filters.However,the performance of the filter mainly depends upon the design,and stability of the controller.The efficiency of the proposed filter is enhanced by incorporating an enhanced adaptive fuzzy neural network(AFNN)controller.The performance of the proposed topology is examined in a MATLAB/Simulink environment,and experimental findings are provided to validate the effectiveness of this approach.Further,the results of the proposed controller are compared with Adaptive Fuzzy Back-Stepping(AFBS)and Adaptive Fuzzy Sliding(AFS)to prove its superiority over power quality improvement in MG.From the analysis,it can be observed that the proposed system reduces the total harmonic distortion by about 1.8%,which is less than the acceptable limit standard.
文摘Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality.
文摘The reasonability of the adopted capacity load ratio numerical value in urban power grid planning determines the economy of planning level yearly power grid.Too large capacity load ratio will result in the increasing investment in the early period of power grid construction, however, too small capacity load ratio will make the power grid have poor adaptability, affecting the power supply. Reasonably determining the adopted regional power grid capacity load ratio quantitative numerical value in planning has a strong guiding significance for constructing reliable and economic power grid and preventing power grid from excessive advance or lagging behind the load development. This paper, through the statistics and analysis of a certain regional power grid 2010-2012 three years' power grid daily load characteristics and the investment benefit evaluation of three years' 220KV power grid individual project, makes a preliminary analysis and puts forwards the specific advice on the reasonable values of power ~rid 35-220KV power transformation capacity load ratio.
文摘The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in remote areas.So far,Solar Home Systems(SHS)have mostly been applied to increase electricity access in rural areas.SHSs have continuous constraints to meet electricity demands and cannot run income-generating activities.The current research presents the feasibility study of electrifying Remera village with the smart microgrid as a case study.The renewable energy resources available in Remera are the key sources of electricity in that village.The generation capacity is estimated based on the load profile.The microgrid configurations are simulated with HOMER,and the genetic algorithm is used to analyze the optimum cost.By analyzing the impact of operation and maintenance costs,the results show that the absence of subsidies increases the levelized cost of electricity(COE)five times greater than the electricity price from the public utility.The microgrid made up of PV,diesel generator,and batteries proved to be the most viable solution and ensured continuous power supply to customers.By considering the subsidies,COE reaches 0.186$/kWh,a competitive price with electricity from public utilities in Rwanda.
文摘With the problem of global energy shortage and people’s awareness of energy saving, electric vehicles receive world-wide attention from government to business. Then the load of the power grid will rapidly increase in a short term, and a series of effects will bring to the power grid operation, management, production and planning. With the large-scale penetration of electric vehicles and distributed energy gradually increased, if they can be effectively controlled and regulated, they can play the roles of load shifting, stabling intermittent renewable energy sources, providing emergency power supply and so on. Otherwise they may have a negative impact, which calls for a good interaction of electric vehicles and power grid. Analyzed the status of the current study on the interaction between the electric vehicles and the power grid, this paper builds the material basis, information architecture and the corresponding control method for the interaction from the aspect of the energy and information exchanging, and then discusses the key issues, which makes a useful exploration for the further research.
文摘This paper describes the performance, generated power flow distribution and redistribution for each power plant on the grid based on adapting load and weather forecasting data. Both load forecasting and weather forecasting are used for collecting predicting data which are required for optimizing the performance of the grid. The stability of each power systems on the grid highly affected by load varying, and with the presence of the wind power systems on the grid, the grid will be more exposed to lowering its performance and increase the instability to other power systems on the gird. This is because of the intermittence behavior of the generated power from wind turbines as they depend on the wind speed which is varying all the time. However, with a good prediction of the wind speed, a close to the actual power of the wind can be determined. Furthermore, with knowing the load characteristics in advance, the new load curve can be determined after being subtracted from the wind power. Thus, with having the knowledge of the new load curve, and data that collected from SACADA system of the status of all power plants, the power optimization, load distribution and redistribution of the power flows between power plants can be successfully achieved. That is, the improvement of performance, more reliable, and more stable power grid.
文摘Lately,in modern smart power grids,energy demand for accurate forecast of electricity is gaining attention,with increased interest of research.This is due to the fact that a good energy demand forecast would lead to proper responses for electricity demand.In addition,proper energy demand forecast would ensure efficient planning of the electricity industry and is critical in the scheduling of the power grid capacity and management of the entire power network.As most power systems are been deregulated and with the rapid introduction and development of smart-metering technologies in Oman,new opportunities may arise considering the efficiency and reliability of the power system;like price-based demand response programs.These programs could either be a large scale for household,commercial or industrial users.However,excellent demand forecasting models are crucial for the deployment of these smart metering in the power grid based on good knowledge of the electricity market structure.Consequently,in this paper,an overview of the Oman regulatory regime,financial mechanism,price control,and distribution system security standard were presented.More so,the energy demand forecast in Oman was analysed,using the econometric model to forecasts its energy peak demand.The energy econometric analysis in this study describes the relationship between the growth of historical electricity consumption and macro-economic parameters(by region,and by tariff),considering a case study of Mazoon Electricity Distribution Company(MZEC),which is one of the major power distribution companies in Oman,for effective energy demand in the power grid.
基金supported by Science and Technology Project of State Grid Zhejiang Corporation of China“Research on State Estimation and Risk Assessment Technology for New Power Distribution Networks for Widely Connected Distributed Energy”(5211JX22002D).
文摘With a further increase in energy flexibility for customers,short-term load forecasting is essential to provide benchmarks for economic dispatch and real-time alerts in power grids.The electrical load series exhibit periodic patterns and share high associations with metrological data.However,current studies have merely focused on point-wise models and failed to sufficiently investigate the periodic patterns of load series,which hinders the further improvement of short-term load forecasting accuracy.Therefore,this paper improved Autoformer to extract the periodic patterns of load series and learn a representative feature from deep decomposition and reconstruction.In addition,a novel multi-factor attention mechanism was proposed to handle multi-source metrological and numerical weather prediction data and thus correct the forecasted electrical load.The paper also compared the proposed model with various competitive models.As the experimental results reveal,the proposed model outperforms the benchmark models and maintains stability on various types of load consumers.
文摘With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to the severe wind power curtailment issue, the characteristics of interactive load are studied upon the traditional day-ahead dispatch model to mitigate the influence of wind power fluctuation. A multi-objective optimal dispatch model with the minimum operating cost and power losses is built. Optimal power flow distribution is available when both generation and demand side participate in the resource allocation. The quantum particle swarm optimization (QPSO) algorithm is applied to convert multi-objective optimization problem into single objective optimization problem. The simulation results of IEEE 30-bus system verify that the proposed method can effectively reduce the operating cost and grid loss simultaneously enhancing the consumption of wind power.
文摘In the last few decades, in the world and also in the European Union, considerable resources had been invested in the rapid development of renewable energy sources and distributed generation in general. At the same time, power consumption is continuously increasing, and consumers are becoming more complex, which ultimately requires new investments in the distribution network. Concept of smart grids is generally accepted as a possible solution. Smart grid is a concept with many elements, where monitoring and control of every element in the chain of production, transmission, distribution and final consumption enable much more efficient delivery and use of electricity. One of the elements of smart grid efficiency is the ability of real-time demand-supply balancing. This balancing is carried out by monitoring of consumption and redistribution of electricity among individual end users, according to their needs. The aim of this paper is creating algorithm for real-time load management using power measurements. Algorithm for real-time load management at the ETFOS (Faculty of Electrical Engineering in Osijek), Croatia is created based on measurements of photovoltaic power plant production, the power consumption of air conditioning system and the faculty building total electricity consumption. Expected result of real-time re-dispatching of air conditioners consumption, depending on the level of electricity production in photovoltaic power plant is decreasing peak demand of the faculty.
文摘A distribution grid is generally characterized by a high R/X (resistance/reactance) ratio and it is radial in nature. By design, a distribution grid system is not an active network, and it is normally designed in such a way that power flows from transmission system via distribution system to consumers. But in a situation when wind turbines are connected to the distribution grid, the power source will change from one source to two sources, in this case, network is said to be active. This may probably have an impact on the distribution grid to whenever the wind turbine is connected. The best way to know the impact of wind turbine on the distribution grid in question is by carrying out load flow analysis on that system with and without the connection of wind turbines. Two major fundamental calculations: the steady-state voltage variation at the PCC (point of common coupling) and the calculation of short-circuit power of the grid system at the POC (point of connection) are necessary before carrying out the load flow study on the distribution grid. This paper, therefore, considers these pre-load flow calculations that are necessary before carrying out load flow study on the test distribution grid. These calculations are carded out on a test distribution system.
基金supported by the National Key R&D Program of China for International S&T Cooperation Projects(No.2019YFE0118700)National Natural Science Foundation of China(Nos.62222306 and 61973110)+1 种基金Hunan Young Talents Science and Technology Innovation Project(No.2020RC3048)Natural Science Found for Distinguished Young Scholars of Hunan Province(No.2021JJ10030).
文摘Power grids,due to their lack of network redundancy and structural interdependence,are particularly vulnerable to cascading failures,a phenomenon where a few failed nodes—having their loads exceeding their capacities—can trigger a widespread collapse of all nodes.Here,we extend the cascading failure(Motter-Lai)model to a more realistic perspective,where each node’s load capacity is determined to be nonlinearly correlated with the node’s centrality.Our analysis encompasses a range of synthetic networks featuring small-world or scale-free properties,as well as real-world network configurations like the IEEE bus systems and the US power grid.We find that fine-tuning this nonlinear relationship can significantly enhance a network’s robustness against cascading failures when the network nodes are under attack.Additionally,the selection of initial nodes and the attack strategies also impact overall network robustness.Our findings offer valuable insights for improving the safety and resilience of power grids,bringing us closer to understanding cascading failures in a more realistic context.
文摘During this decade,many countries have experienced natural and accidental disasters,such as typhoons,floods,earthquakes,and nuclear plant accidents,causing catastrophic damage to infrastructures.Since the end of 2019,all countries of the world are struggling with the COVID-19 and pursuing countermeasures,including inoculation of vaccine,and changes in our lifestyle and social structures.All these experiences have made the residents in the affected regions keenly aware of the need for new infrastructures that are resilient and autonomous,so that vital lifelines are secured during calamities.A paradigm shift has been taking place toward reorganizing the energy social service management in many countries,including Japan,by effective use of sustainable energy and new supply schemes.However,such new power sources and supply schemes would affect the power grid through intermittency of power output and the deterioration of power quality and service.Therefore,new social infrastructures and novel management systems to supply energy and social service will be required.In this paper,user-friendly design,operation and control assist tools for resilient microgrids and autonomous communities are proposed and applied to the standard microgrid to verify its effectiveness and performance.
基金supported by the State Grid Science and Technology Project, “Study on Multi-source and Multiload Coordination and Optimization Technology Considering Desalination of Sea Water” (No. SGTJDK00DWJS1800011)
文摘Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benefits of seawater desalination, the desalination load can be combined with renewable energy sources such as solar energy, wind energy, and ocean energy or with the power grid to ensure its effective regulation. Utilizing energy internet(EI) technology, energy balance demand of the regional power grid, and coordinated control between coastal multi-source multi-load and regional distribution network with desalination load is reviewed herein. Several key technologies, including coordinated control of coastal multi-source multi-load system with seawater desalination load, flexible interaction between seawater desalination and regional distribution network, and combined control of coastal multi-source multi-load storage system with seawater desalination load, are discussed in detail. Adoption of the flexible interaction between seawater desalination and regional distribution networks is beneficial for solving water resource problems, improving the ability to dissipate distributed renewable energy, balancing and increasing grid loads, improving the safety and economy of coastal power grids, and achieving coordinated and comprehensive application of power grids, renewable energy sources, and coastal loads.
基金support provided in part by the National Key Research and Development Program of China (No.2020YFB1005804)in part by the National Natural Science Foundation of China under Grant 61632009+1 种基金in part by the High-Level Talents Program of Higher Education in Guangdong Province under Grant 2016ZJ01in part by the NCRA-017,NUST,Islamabad.
文摘Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactions.STLF ranges from an hour ahead prediction to a day ahead prediction. Variouselectric load forecasting methods have been used in literature for electricitygeneration planning to meet future load demand. A perfect balance regardinggeneration and utilization is still lacking to avoid extra generation and misusageof electric load. Therefore, this paper utilizes Levenberg–Marquardt(LM) based Artificial Neural Network (ANN) technique to forecast theshort-term electricity load for smart grids in a much better, more precise,and more accurate manner. For proper load forecasting, we take the mostcritical weather parameters along with historical load data in the form of timeseries grouped into seasons, i.e., winter and summer. Further, the presentedmodel deals with each season’s load data by splitting it into weekdays andweekends. The historical load data of three years have been used to forecastweek-ahead and day-ahead load demand after every thirty minutes makingload forecast for a very short period. The proposed model is optimized usingthe Levenberg-Marquardt backpropagation algorithm to achieve results withcomparable statistics. Mean Absolute Percent Error (MAPE), Root MeanSquared Error (RMSE), R2, and R are used to evaluate the model. Comparedwith other recent machine learning-based mechanisms, our model presentsthe best experimental results with MAPE and R2 scores of 1.3 and 0.99,respectively. The results prove that the proposed LM-based ANN modelperforms much better in accuracy and has the lowest error rates as comparedto existing work.