期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Line-integral representations for extended displacements, stresses,and interaction energy of arbitrary dislocation loops in transversely isotropic magneto-electro-elastic bimaterials 被引量:1
1
作者 袁江宏 陈伟球 E.PAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第8期1005-1028,共24页
In addition to the hexagonal crystals of class 6 mm, many piezoelectric materials (e.g., BaTiO3), piezomagnetic materials (e.g., CoFe2O4), and multiferroic com-posite materials (e.g., BaTiO3-CoFe2O4 composites)... In addition to the hexagonal crystals of class 6 mm, many piezoelectric materials (e.g., BaTiO3), piezomagnetic materials (e.g., CoFe2O4), and multiferroic com-posite materials (e.g., BaTiO3-CoFe2O4 composites) also exhibit symmetry of transverse isotropy after poling, with the isotropic plane perpendicular to the poling direction. In this paper, simple and elegant line-integral expressions are derived for extended displace-ments, extended stresses, self-energy, and interaction energy of arbitrarily shaped, three-dimensional (3D) dislocation loops with a constant extended Burgers vector in trans-versely isotropic magneto-electro-elastic (MEE) bimaterials (i.e., joined half-spaces). The derived solutions can also be simply reduced to those expressions for piezoelectric, piezo-magnetic, or purely elastic materials. Several numerical examples are given to show both the multi-field coupling effect and the interface/surface effect in transversely isotropic MEE materials. 展开更多
关键词 dislocation loop multiferroic transverse isotropy bimaterial half space extended displacement extended stress interaction energy
下载PDF
Interaction among fractures and stress field computation of fracture systems
2
作者 张之立 《Acta Seismologica Sinica(English Edition)》 CSCD 1994年第1期43-54,共12页
The interaction problem among fractures under the action of compressional stress is studied in this paper by using the finite element method and boundary element method respectively.The mechanical criteria which diffe... The interaction problem among fractures under the action of compressional stress is studied in this paper by using the finite element method and boundary element method respectively.The mechanical criteria which differentiate between the independent fractures and fracture systems and their computation methods are presented in this paper.The proportional conditions between length and spacing of fractures that exist interaction for several kinds of fracture groups of different geometric arrangement are given.The effect of interaction among fractures on the displacement field,stress field and strain energy distribution are computed.The relations between the fracture system of conjugate array and conjugate earthquakes are also discussed in this paper. 展开更多
关键词 interaction among fractures displacement field and stress field strain energy methods of finite element and boundary element stress intensity factor ratio
下载PDF
On the pressure and stress singularities induced by steady flows of incompressible viscous fluids 被引量:3
3
作者 G.B.Sinclair X.Chi T.I-P.Shih 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第4期451-462,共12页
Design for structural integrity requires an appreciation of where stress singularities can occur in structural configurations. While there is a rich literature devoted to the identification of such singular behavior i... Design for structural integrity requires an appreciation of where stress singularities can occur in structural configurations. While there is a rich literature devoted to the identification of such singular behavior in solid mechanics, to date there has been relatively little explicit identification of stress singularities caused by fluid flows. In this study, stress and pressure singularities induced by steady flows of viscous incompressible fluids are asymptotically identified. This is done by taking advantage of an earlier result that the Navier-Stokes equations are locally governed by Stokes flow in angular corners. Findings for power singularities are confirmed by developing and using an analogy with solid mechanics. This analogy also facilitates the identification of flow-induced log singularities. Both types of singularity are further confirmed for two global configurations by applying convergence-divergence checks to numerical results. Even though these flow-induced stress singularities are analogous to singularities in solid mechanics, they nonetheless render a number of structural configurations singular that were not previously appreciated as such from identifications within solid mechanics alone. 展开更多
关键词 Incompressible viscous fluids Navier-Stokes equations Fluid-structure interactions stress singularities
下载PDF
A new analytical-numerical method for calculating interacting stresses of a multi-hole problem under both remote and arbitrary surface stresses 被引量:1
4
作者 Wei YI Qiuhua RAO +2 位作者 Wenbo MA Dongliang SUN Qingqing SHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第10期1539-1560,共22页
Based on the elementary solutions and new integral equations,a new analytical-numerical method is proposed to calculate the interacting stresses of multiple circular holes in an infinite elastic plate under both remot... Based on the elementary solutions and new integral equations,a new analytical-numerical method is proposed to calculate the interacting stresses of multiple circular holes in an infinite elastic plate under both remote stresses and arbitrarily distributed stresses applied to the circular boundaries.The validity of this new analytical-numerical method is verified by the analytical solution of the bi-harmonic stress function method,the numerical solution of the finite element method,and the analytical-numerical solutions of the series expansion and Laurent series methods.Some numerical examples are presented to investigate the effects of the hole geometry parameters(radii and relative positions)and loading conditions(remote stresses and surface stresses)on the interacting tangential stresses and interacting stress concentration factors(SCFs).The results show that whether the interference effect is shielding(k<1)or amplifying(k>1)depends on the relative orientation of holes(α)and remote stresses(σ^∞x,σ^∞y).When the maximum principal stress is aligned with the connecting line of two-hole centers andσ^∞y<0.5σ^∞x,the plate containing two circular holes has greater stability than that containing one circular hole,and the smaller circular hole has greater stability than the bigger one.This new method not only has a simple formulation and high accuracy,but also has an advantage of wide applications over common analytical methods and analytical-numerical methods in calculating the interacting stresses of a multi-hole problem under both remote and arbitrary surface stresses. 展开更多
关键词 new analytical-numerical method interacting stress multi-hole problem remote stress arbitrary surface stress
下载PDF
Thellungiella halophila ThPIP1 gene enhances the tolerance of the transgenic rice to salt stress 被引量:1
5
作者 QIANG Xiao-jing YU Guo-hong +4 位作者 JIANG Lin-lin SUN Lin-lin ZHANG Shu-hui LI Wei CHENG Xian-guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第10期1911-1922,共12页
Aquaporin proteins were demonstrated to play an important regulatory role in transporting water and other small molecules. To better understand physiological functions of aquaporins in extremophile plants, a novel ThP... Aquaporin proteins were demonstrated to play an important regulatory role in transporting water and other small molecules. To better understand physiological functions of aquaporins in extremophile plants, a novel ThPIP1 gene from the Thellungiella halophila was isolated and functionally characterized in the transgenic rice. Data showed that the ThPIP1 protein encoded 284 amino acids, and was identified to be located on the plasma membrane. The expression of ThPIP1 gene in the shoots and roots of T. halophila seedlings were induced by high salinity. The transgenic rice overexpressing ThPIP1 gene significantly increased plants tolerance to salt stress through the pathway regulating the osmotic potentials, accumulation of organic small molecules substances and the ratio of K+/Na+ in the plant cells. Moreover, split-ubiquitin yeast two-hybrid assay showed that Th PIP1 protein specifically interacted with ThPIP2 and a non-specific lipid-transfer protein 2, suggesting that ThPIP1 probably play a key role in responding to the reactions of multiple external stimulus and in participating in different physiological processes of plants exposed to salt stress. 展开更多
关键词 ThPIP1 transgenic rice salt stress protein interaction Thellungiella halophila
下载PDF
The wind-saltation interaction in a saltation boundary layer with a downwind air pressure gradient
6
作者 ZhiBao Dong QingSong Mu +1 位作者 GuangQiang Qian WanYin Luo 《Research in Cold and Arid Regions》 2010年第5期384-395,共12页
Studies of interactions between wind and saltating particles (i.e., the wind-saltation interaction) are usually conducted without consideration of the downwind air pressure gradient. However, in a wind tunnel with l... Studies of interactions between wind and saltating particles (i.e., the wind-saltation interaction) are usually conducted without consideration of the downwind air pressure gradient. However, in a wind tunnel with limited size, this gradient is required to maintain the movement of the saltation cloud. Attempts are made to investigate the effects of the downwind air pressure gradient on the wind-saltation interaction in a saltation boundary layer based on the experimental results from a wind tunnel with a relatively small cross-sectional area. The wind-saltation interaction is characterized by airborne stress, grain-borne stress, and the force exerted on the wind by the saltation cloud. Basic equations were developed for wind-saltation interactions without and with a downwind air pressure gradient. The results reveal that unacceptable values of negative grain-borne stress and negative force exerted on the wind by the saltation cloud are obtained if the downwind air pressure gradient is ignored. When this air pressure gradient is defined using the measured wind velocity profiles in the presence of saltation and the downwind air pressure gradient is taken into account, reasonable values for grain-borne stress and the force exerted on the wind by the saltation cloud are obtained. These results suggest that attention must be paid to the effects of downwind air pressure gradients when studying the wind-saltation interaction in a wind tunnel. Consideration of the downwind air pressure gradient, inertial forces, and other unidentified variables will provide a more thorough understanding of the interactions within a saltation boundary layer. 展开更多
关键词 aeolian transport wind-saltation interaction shear stress force
下载PDF
Modal interactions in primary and subharmonic resonant dynamics of imperfect microplates with geometric nonlinearities
7
作者 Hamed Farokhi Mergen H.Ghayesh 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期469-480,共12页
This paper analyses the modal interactions in the nonlinear, size-dependent dynamics of geometrically imperfect microplates. Based on the modified couple stress theory,the equations of motion for the in-plane and out-... This paper analyses the modal interactions in the nonlinear, size-dependent dynamics of geometrically imperfect microplates. Based on the modified couple stress theory,the equations of motion for the in-plane and out-of-plane motions are obtained employing the von Kármán plate theory as well as Kirchhoff's hypotheses by means of the Lagrange equations. The equations of motions are solved using the pseudo-arclength continuation technique and direct timeintegration method. The system parameters are tuned to the values associated with modal interactions, and then nonlinear resonant responses and energy transfer are analysed.Nonlinear motion characteristics are shown in the form of frequency-response and force-response curves, time histories, phase-plane portraits, and fast Fourier transforms. 展开更多
关键词 Modal interactions Microplate Sizedependent dynamics Modified couple stress theory Stability
下载PDF
Diagnostic calculation of the upper-layer circulation in the South China Sea during the winter of 1998 被引量:7
8
作者 YUANYaochu BUXianwei LIAOGuanghong LOURuyun SUJilan WANGKangshan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2004年第2期187-199,共13页
On the basis of hydrographic data obtained in November 28 to December 27, 1998 cruise, the calculation of the circulation in the South China Sea (SCS) is made by using the P-vector method, in combination with SSH data... On the basis of hydrographic data obtained in November 28 to December 27, 1998 cruise, the calculation of the circulation in the South China Sea (SCS) is made by using the P-vector method, in combination with SSH data from TOPEX/ERS-2 analysis. For study of the dynamical mechanism, which causes the pattern of winter circulation in the SCS, the diagnostic model (Yuan et al., 1982; Yuan and Su, 1992) is used to simulate numerically the winter circulation in the SCS. The following results have been obtained. (1) The main characteristics of the circulation systems in the central SCS are as follows: A coastal southward jet in winter is present at the western boundary near the coast of Vietnam; there is a stronger cyclonic circulation with a larger horizontal scale east of this coastal southward jet and west of 114°E; there is a weaker anti-cyclonic circulation in the central part of eastern SCS; there is a stronger and northeastward flow opposing the northeasterly monsoon between above a stronger cyclonic circulation and a weaker anti-cyclonic circulation. (2) The circulation systems in the northern SCS are as follows: 1) There is a cyclonic circulation system northwest of Luzon, and it has three centers of the cold water; 2) There is an anti-cyclonic eddy. Its center is located near(20°N, 116°40' E); 3)There is a warm and anti-cyclonic circulation south of Hainan Island; 4) There is a northeastward flow, the South China Sea Warm Current, in winter off Guangdong coast in the northern SCS. (3) In the southern SCS there is an anti-cyclonic circulation, and also there is a smaller scale cold water and cyclonic eddy. (4) The above pattern of winter circulation in the SCS agrees qualitatively with the horizontal distribution of temperature at 200 m level. (5) The dynamical mechanism which produces the above basic pattern of winter circulation is because of the following two causes: 1) The joint effect of the baroclinity and relief (JEBAR) is an essential dynamical cause; 2) The interaction between the wind stress and bottom topographic (IBWT) under the strong northeasterly monsoon is the next important dynamical mechanism. (6) Comparing the hydrographic structure and the horizontal distribution of velocity with the SSH data from TOPEX/ERS-2 analysis in the SCS during December of 1998, it is found that they agree qualitatively. 展开更多
关键词 SCS upper-layer circulation in winter of 1998 JEBAR interaction between the wind stress and bottom topographic SSH data from TOPEX/ERS-2
下载PDF
Calculation of circulation in the South China Sea during summer of 2000 by the modified inverse method 被引量:8
9
作者 YUANYaochu LIUYonggang +3 位作者 LIAOGuanghong LOURuyun SUJilan WANGKangshan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2005年第1期14-30,共17页
On the basis of hydrographic data obtained in August 2000 cruise, the circulation in the South China Sea (SCS) is computed by the modified inverse method in combination with SSH data from TOPEX/ERS-2 analysis. For stu... On the basis of hydrographic data obtained in August 2000 cruise, the circulation in the South China Sea (SCS) is computed by the modified inverse method in combination with SSH data from TOPEX/ERS-2 analysis. For study of the dynamical mechanism, which causes the pattern of summer circulation in the SCS, the diagnostic model (Yuan et al. 1982. Acta Oceanologica Sinica,4(1):1-11; Yuan and Su. 1992. Numerical Computation of Physical Oceanography.474-542) is used to simulate numerically the summer circulation in the SCS. The following results have been obtained. (1) The central and southwestern SCSs are dominated mainly by anticy-clonic circulation systems. They are mainly as follows. 1) There is strong anticyclonic eddy southeast of Vietnam (W1). Its horizontal scale is about 300 km, and it extends vertically from the surface to the about 1 000 m level. 2) There are a warm eddy W2 southeast of Zhongsha Islands and the anticyclonic circulation system W3 west off the Luzon Island. 3) There is a stronger cyclonic eddy C1 between the anticyclonic eddies W1 and W2.4) A strong northward coastal jet is present near the coast of Vietnam, and separates from the coast of Vietnam at about 12° N to the northeast.(2)The northern SCS is dominated mainly by a cyclonic circulation system. There is a cyclonic circulation system near and north of Section N2. (3) The southeastern SCS is dominated mainly by the cyclonic circulation system. (4) Comparing the results of circulation in the SCS during the summer of 2000 with those during the summer of 1998, it is found that they agree qualitatively, but there is the some difference between them in quantity.This shows that the circulation in the SCS has obviously seasonal feature. (5) The dynamical mechanism which products the basic pattern of summer circulation is because the following two reasons: 1) the joint effect of the baroclinity and relief (JEBAR) is essential dynamical cause; and 2) it is next important dynamical cause that the interaction between the wind stress and bottom topography under the southerly monsoon. (6) Comparing the hydrographic structure and distribution of stream functions with the SSH data from TOPEX/ERS-2 analysis in the SCS during August of 2000, they agree qualitatively. 展开更多
关键词 SCS circulation in the summer of 2000 JEBAR interaction between the wind stress and bottom topography SSH data from TOPEX/ERS-2 modified inverse method
下载PDF
Use of genotype-environment interactions to elucidate the pattern of maize root plasticity to nitrogen deficiency 被引量:8
10
作者 Pengcheng Li Zhongjuan Zhuang +7 位作者 Hongguang Cai Shuai Cheng Ayaz Ali Soomro Zhigang Liu Riliang Gu Guohua Mi Lixing Yuan Fanjun Chen 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2016年第3期242-253,共12页
Maize(Zea mays L.) root morphology exhibits a high degree of phenotypic plasticity to nitrogen(N) de ficiency,but the underlying genetic architecture remains to be investigated Using an advanced BC_4F_3 population... Maize(Zea mays L.) root morphology exhibits a high degree of phenotypic plasticity to nitrogen(N) de ficiency,but the underlying genetic architecture remains to be investigated Using an advanced BC_4F_3 population,we investigated the root growth plasticity under two contrasted N levels and identi fied the quantitative trait loci(QTLs) with QTL-environment(Q×E)interaction effects. Principal components analysis(PCA) on changes of root traits to N de ficiency(D LN-HN) showed that root length and biomass contributed for 45.8% in the same magnitude and direction on the first PC,while root traits scattered highly on PC_2 and PC_3. Hierarchical cluster analysis on traits for D LN-HN further assigned the BC_4F_3 lines into six groups,in which the special phenotypic responses to N de ficiency was presented These results revealed the complicated root plasticity of maize in response to N de ficiency that can be caused by genotype environment(G×E) interactions. Furthermore,QTL mapping using a multi-environment analysis identi fied 35 QTLs for root traits. Nine of these QTLs exhibited signi ficant Q×E interaction effects. Taken together,our findings contribute to understanding the phenotypic and genotypic pattern of root plasticity to N de ficiency,which will be useful for developing maize tolerance cultivars to N de ficiency. 展开更多
关键词 Genotype-environment interactions nitrogen stress quantitative trait locus root morphology root plasticity Zea mays L
原文传递
A reined global-local approach for evaluation of singular stress ield based on scaled boundary inite element method 被引量:1
11
作者 Lin Pang Gao Lin Zhiqiang Hu 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第2期123-136,共14页
A reined global-local approach based on the scaled boundary inite element method(SBFEM) is proposed to improve the accuracy of predicted singular stress ield. The proposed approach is carried out in conjunction with... A reined global-local approach based on the scaled boundary inite element method(SBFEM) is proposed to improve the accuracy of predicted singular stress ield. The proposed approach is carried out in conjunction with two steps. First, the entire structure is analyzed by employing an arbitrary numerical method. Then, the interested region, which contains stress singularity, is re-solved using the SBFEM by placing the scaling center right at the singular stress point with the boundary conditions evaluated from the irst step imposed along the whole boundary including the side-faces. Beneiting from the semi-analytical nature of the SBFEM, the singular stress ield can be predicted accurately without highly reined meshes. It provides the FEM or other numerical methods with a rather simple and convenient way to improve the accuracy of stress analysis. Numerical examples validate the effectiveness of the proposed approach in dealing with various kinds of problems. 展开更多
关键词 SBFEM stress singularity Boundary conditions Side-faces Dam-reservoir-foundation interaction Thermal stress
原文传递
Interacting Stress Intensity Factors of Multiple Elliptical-Holes and Cracks Under Far-Field and Arbitrary Surface Stresses
12
作者 Wei Yi Qiuhua Rao +3 位作者 Wei Zhu Qingqing Shen Zhuo Li Wenbo Ma 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第1期125-154,共30页
Calculating interacting stress intensity factors(SIFs)of multiple ellipticalholes and cracks is very important for safety assessment,stop-hole optimization design and resource exploitation production in underground ro... Calculating interacting stress intensity factors(SIFs)of multiple ellipticalholes and cracks is very important for safety assessment,stop-hole optimization design and resource exploitation production in underground rock engineering,e.g.,buried tunnels,deep mining,geothermal and shale oil/gas exploitation by hydraulic fracturing technology,where both geo-stresses and surface stresses are applied on buried tunnels,horizontal wells and natural cracks.However,current literatures are focused mainly on study of interacting SIFs of multiple elliptical-holes(or circularholes)and cracks only under far-field stresses without consideration of arbitrary surface stresses.Recently,our group has proposed a new integral method to calculate interacting SIFs of multiple circular-holes and cracks subjected to far-filed and surface stresses.This new method will be developed to study the problem of multiple elliptical-hole and cracks subjected to both far-field and surface stresses.In this study,based on Cauchy integral theorem,the exact fundamental stress solutions of single elliptical-hole under arbitrarily concentrated surface normal and shear forces are derived to establish new integral equation formulations for calculating interacting SIFs of multiple elliptical-holes and cracks under both far-field and arbitrary surface stresses.The new method is proved to be valid by comparing our results of interacting SIFs with those obtained by Green’s function method,displacement discontinuity method,singular integral equation method,pseudo-dislocations method and finite element method.Computational examples of one elliptical-hole and one crack in an infinite elastic body are given to analyze influence of loads and geometries on interacting SIFs.Research results show that whenσ_(xx)^(∞)≥σ^(yy′)^(∞),there appears a neutral crack orientation angle b0(without elliptical-hole’s effect).Increasing s¥xx/s¥yy and b/a(close to circularhole)usually decreases b0 of KI and benefits to the layout of stop-holes.The surface compressive stresses applied onto elliptical-hole(n)and crack(p)have significant influence on interacting SIFs but almost no on b0.Increasing n and p usually results in increase of interacting SIFs and facilitates crack propagation and fracture networks.The elliptical-hole orientation angle(a)and holed-cracked distance(t)have great influence on the interacting SIFs while have little effect on b0.The present method is not only simple(without any singular parts),high-accurate(due to exact fundamental stress solutions)and wider applicable(under far-field stresses and arbitrarily distributed surface stress)than the common methods,but also has the potential for the anisotropic problem involving multiple holes and cracks. 展开更多
关键词 Interacting stress intensity factors multiple elliptical-holes and cracks far-field stresses arbitrary surface stresses integral equation method
原文传递
The Effect of Particle Shape on the Structure and Rheological Properties of Carbon-based Particle Suspensions 被引量:4
13
作者 Ran Niu Jiang Gong +2 位作者 许东华 Tao Tang 孙昭艳 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2015年第11期1550-1561,共12页
The structure and rheological properties of carbon-based particle suspensions, i.e., carbon black(CB), multi-wall carbon nanotube(MWNT), graphene and hollow carbon sphere(HCS) suspended in polydimethylsiloxane(... The structure and rheological properties of carbon-based particle suspensions, i.e., carbon black(CB), multi-wall carbon nanotube(MWNT), graphene and hollow carbon sphere(HCS) suspended in polydimethylsiloxane(PDMS), are investigated. In order to study the effect of particle shape on the structure and rheological properties of suspensions, the content of surface oxygen-containing functional groups of carbon-based particles is controlled to be similar. Original spherical-like CB(fractal filler), rod-like MWNT and sheet-like graphene form large agglomerates in PDMS, while spherical HCS particles disperse relatively well in PDMS. The dispersion state of carbon-based particles affects the critical concentration of forming a rheological percolation network. Under weak shear, negative normal stress differences(ΔN) are observed in CB, MWNT and graphene suspensions, while ΔN is nearly zero for HCS suspensions. It is concluded that the vorticity alignment of CB, MWNT and graphene agglomerates under shear results in the negative ΔN. However, no obvious structural change is observed in HCS suspension under weak shear, and accordingly, the ΔN is almost zero. 展开更多
关键词 Particle shape Surface chemistry Negative normal stress differences Structure interaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部