To examine the influence of the structural parameters and working parameters of a double-drum regeneration mixing station on its mixing uniformity,the influence of the discrete element method and response surface meth...To examine the influence of the structural parameters and working parameters of a double-drum regeneration mixing station on its mixing uniformity,the influence of the discrete element method and response surface method on the uniformity of the aggregate mixing when the interaction between two different factors was analyzed.A mathematical model of the influence of various factors and interactions on the coefficient of variation of the aggregates was established.The matching of each parameter was optimized with the goal of minimizing the coefficient of variation.The results show that when the aggregate particle size is different,the significance of each parameter affecting its mixing uniformity is also different.Moreover,increasing the speed and reducing the axial installation angle of the blade can reduce the coefficient of variation of the three aggregates.To obtain a good mixing uniformity,the mixing-arm phase angle when the drum inclination angle is large should be smaller than the phase angle when the drum inclination angle is small,and the mixing of large particles should not be arranged with a large mixing-arm phase angle.With a blade radial installation angle of 38°,a blade axial installation angle of 35°,a drum inclination angle of 6°,a drum rotation speed of 10 r/min,and a mixing-arm phase angle of 32°,the aggregate as a whole can exhibit the best mixing uniformity.展开更多
In the present study, we reconstructed upper airway and soft palate models of 3 obstructive sleep apnea-hypopnea syndrome(OSAHS) patients with nasal obstruction. The airflow distribution and movement of the soft pal...In the present study, we reconstructed upper airway and soft palate models of 3 obstructive sleep apnea-hypopnea syndrome(OSAHS) patients with nasal obstruction. The airflow distribution and movement of the soft palate before and after surgery were described by a numerical simulation method. The curative effect of nasal surgery was evaluated for the three patients with OSAHS. The degree of nasal obstruction in the 3 patients was improved after surgery. For 2 patients with mild OSAHS, the upper airway resistance and soft palate displacement were reduced after surgery. These changes contributed to the mitigation of respiratory airflow limitation. For the patient with severe OSAHS, the upper airway resistance and soft palate displacement increased after surgery, which aggravated the airway obstruction. The effcacy of nasal surgery for patients with OSAHS is determined by the degree of improvement in nasal obstruction and whether the effects on the pharynx are beneficial. Numerical simulation results are consistent with the polysomnogram(PSG) test results, chief complaints, and clinical findings, and can indirectly reflect the degree of nasal patency and improvement of snoring symptoms, and further,provide a theoretical basis to solve relevant clinical problems.展开更多
Objective The objective of this study was to identify new carcinogenetic hub genes and develop the integration of differentially expressed genes to predict the prognosis of lung cancer.Methods GSE139032 microarray dat...Objective The objective of this study was to identify new carcinogenetic hub genes and develop the integration of differentially expressed genes to predict the prognosis of lung cancer.Methods GSE139032 microarray data packages were downloaded from the Gene Expression Omnibus for planning,testing,and review of data.We identified KRT6C,LAMC2,LAMB3,KRT6A,and MYEOV from a key module for validation.Results We found that the five genes were related to a poor prognosis,and the expression levels of these genes were associated with tumor stage.Furthermore,Kaplan-Meier plotter showed that the five hub genes had better prognostic values.The mean levels of methylation in lung adenocarcinoma(LUAD)were significantly lower than those in healthy lung tissues for the hub genes.However,gene set enrichment analysis(GSEA)for single hub genes showed that all of them were immune-related.Conclusion Our findings demonstrated that KRT6C,LAMC2,LAMB3,KRT6A,and MYEOV are all candidate diagnostic and prognostic biomarkers for LUAD.They may have clinical implications in LUAD patients not only for the improvement of risk stratification but also for therapeutic decisions and prognosis prediction.展开更多
A thermodynamic model has been built up for the interactions between molten Ti alloys and oxide molding materials in the way of decomposition and solution of molding materials, then the influences on the reaction free...A thermodynamic model has been built up for the interactions between molten Ti alloys and oxide molding materials in the way of decomposition and solution of molding materials, then the influences on the reaction free energy changes have been calculated and discussed.展开更多
Industrial processes are mostly large-scale systems with high order.They use fully centralized control strategy,the parameters of which are difficult to tune.In the design of large-scale systems,the decomposition acco...Industrial processes are mostly large-scale systems with high order.They use fully centralized control strategy,the parameters of which are difficult to tune.In the design of large-scale systems,the decomposition according to the interaction between input and output variables is the first step and the basis for the selection of control structure.In this paper,the decomposition principle of processes in large-scale systems is proposed for the design of control structure.A new variable pairing method is presented,considering the steady-state information and dynamic response of large-scale system.By selecting threshold values,the related matrix can be transformed into the adjoining matrixes,which directly measure the couple among different loops.The optimal number of controllers can be obtained after decomposing the large-scale system.A practical example is used to demonstrate the validity and feasibility of the proposed interaction decomposition principle in process large-scale systems.展开更多
The issue of the extremely imbalanced gender ratio in preschool teachers has received widespread attention,and there are few studies on teacher-child verbal interaction behavior based on gender differences in preschoo...The issue of the extremely imbalanced gender ratio in preschool teachers has received widespread attention,and there are few studies on teacher-child verbal interaction behavior based on gender differences in preschool teachers.This article takes the“Little Light Bulb Is On”,a scientific exploration activity done by 5-6 years old kindergarten students as an example,and uses the improved Flanders Interaction Analysis System(iFIAS)as a tool to analyze the speech interaction behavior of male and female preschool teachers.The research results indicate that there are gender differences in teacher child language interaction between male and female teachers in terms of the atmosphere,the teaching structure,the teaching tendency,the way of raising questions,and the overall trend of interaction.展开更多
Chalkiness is an unpleasant trait for rice con-sumer,which is known to be controlled geneti-cally and affected by environment during grainmaturing.We used the model of Additive Main
This study delves into the intricate relationship between iron(Fe)content in kaolinite and its impact on the adsorption behavior of sodium oleate.The effects of different iron concentrations on adsorption energy,hydro...This study delves into the intricate relationship between iron(Fe)content in kaolinite and its impact on the adsorption behavior of sodium oleate.The effects of different iron concentrations on adsorption energy,hydrogen bond kinetics and adsorption efficiency were studied through simulation and experimental verification.The results show that the presence of iron in the kaolinite structure significantly improves the adsorption capacity of sodium oleate.Kaolinite samples with high iron content have better adsorption properties,lower adsorption energy levels and shorter and stronger hydrogen bonds than pure kaolinite.The optimal concentration of oleic acid ions for achieving maximum adsorption efficiency was identified as 1.2 mmol/L across different kaolinite samples.At this concentration,the adsorption rates and capacities reach their peak,with Fe-enriched kaolinite samples exhibiting notably higher flotation recovery rates.This optimal concentration represents a balance between sufficient oleic acid ion availability for surface interactions and the prevention of self-aggregation phenomena that could hinder adsorption.This study offers promising avenues for optimizing the flotation process in mineral processing applications.展开更多
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp...Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.展开更多
With a focus on an industrial multivariable system, two subsystems including the flow and the level outputs are analysed and controlled, which have applicability in both real and academic environments. In such a case,...With a focus on an industrial multivariable system, two subsystems including the flow and the level outputs are analysed and controlled, which have applicability in both real and academic environments. In such a case, at first, each subsystem is distinctively represented by its model, since the outcomes point out that the chosen models have the same behavior as corresponding ones. Then, the industrial multivariable system and its presentation are achieved in line with the integration of these subsystems, since the interaction between them can not actually be ignored. To analyze the interaction presented, the Gershgorin bands need to be acquired, where the results are used to modify the system parameters to appropriate values. Subsequently, in the view of modeling results, the control concept in two different techniques including sequential loop closing control(SLCC) scheme and diagonal dominance control(DDC) schemes is proposed to implement on the system through the Profibus network, as long as the OPC(OLE for process control) server is utilized to communicate between the control schemes presented and the multivariable system. The real test scenarios are carried out and the corresponding outcomes in their present forms are acquired. In the same way, the proposed control schemes results are compared with each other, where the real consequences verify the validity of them in the field of the presented industrial multivariable system control.展开更多
The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and...The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and flows of the starting stroke (when the wake has not developed) with those of a later stroke (when the wake has developed). The following has been shown. (1) The wake effect may increase or decrease the lift and drag at the beginning of a half-stroke (downstroke or upstroke), depending on the wing kinematics at stroke reversal. The reason for this is that at the beginning of the half-stroke, the wing “impinges” on the spanwise vorticity generated by the wing during stroke reversal and the distribution of the vorticity is sensitive to the wing kinematics at stroke reversal. (2) The wake effect decreases the lift and increases the drag in the rest part of the half-stroke. This is because the wing moves in a downwash field induced by previous half-stroke's starting vortex, tip vortices and attached leading edge vortex (these vortices form a downwash producing vortex ring). (3) The wake effect decreases the mean lift by 6%-18% (depending on wing kinematics at stroke reversal) and slightly increases the mean drag. Therefore, it is detrimental to the aerodynamic performance of the flapping wing.展开更多
Humanities and Social Sciences(HSS) are undergoing the transformation of spatialization and quantification. Geo-computation, with geoinformatics(including RS: Remote Sensing;GIS: Geographical Information System;GNSS: ...Humanities and Social Sciences(HSS) are undergoing the transformation of spatialization and quantification. Geo-computation, with geoinformatics(including RS: Remote Sensing;GIS: Geographical Information System;GNSS: Global Navigation Satellite System), provides effective computational and spatialization methods and tools for HSS. Spatial Humanities and Geo-computation for Social Sciences(SH&GSS) is a field coupling geo-computation, and geoinformatics, with HSS. This special issue accepted a set of contributions highlighting recent advances in methodologies and applications of SH&GSS, which are related to sentiment spatial analysis from social media data, emotional change spatial analysis from news data, spatial analysis of social media related to COVID-19, crime spatiotemporal analysis, “double evaluation” for Land Use/Land Cover(LUCC), Specially Protected Natural Areas(SPNA) analysis, editing behavior analysis of Volunteered Geographic Information(VGI), electricity consumption anomaly detection, First and Last Mile Problem(FLMP) of public transport, and spatial interaction network analysis for crude oil trade network. Based on these related researches, we aim to present an overview of SH&GSS, and propose some future research directions for SH&HSS.展开更多
This paper uses a mathematical method to develop an analytical solution to the local buckling behaviour of long rectangular plates resting on tensionless elastic Winkler foundations and under combined uniform longitud...This paper uses a mathematical method to develop an analytical solution to the local buckling behaviour of long rectangular plates resting on tensionless elastic Winkler foundations and under combined uniform longitudinal uniaxial compressive and uniform in-plane shear loads. Fitted formulas are derived for plates with clamped edges and simplified supported edges. Two examples are given to demonstrate the application of the current method: one is a plate on tensionless spring foundations and the other is the contact between the steel sheet and elastic solid foundation. Finite element (FE) analysis is also conducted to validate the analytical results. Good agreement is obtained between the current method and FE analysis.展开更多
BEL1-like homeodomain(BLH)family proteins are homeodomain transcription factors,which are found ubiquitously in plants and play important roles in regulating meristem and flower development.Although BLH proteins have ...BEL1-like homeodomain(BLH)family proteins are homeodomain transcription factors,which are found ubiquitously in plants and play important roles in regulating meristem and flower development.Although BLH proteins have been reported in some plant species,there is very little information available for plants in the Malus genus(e.g.,apple tree:Malus domestica).In the present study,we identified 19 apple MdBLH genes.Phylogenetic analysis revealed that the MdBLH genes could be divided into five groups.Analysis of gene structure showed that MdBLH gene has four exons,and the third exon was 61 bp in length.Chromosomal location analysis suggested that the MdBLH genes are not distributed uniformly on 12 chromosomes.Eleven MdBLH genes were cloned by RT-PCR,and their expression patterns were also determined.Among them,the expression levels of MdBLH4.1 and MdBLH9.1 could be induced by sodium chloride stress,while the expression levels of MdATH1.1,MdBLH8.1,MdBLH8.3,and MdBLH11.1 were down-regulated by such stress.Transcriptional levels of MdATH1.1 and MdBLH7.2 were down-regulated by mannitol stress.The result of yeast two-hybrid experiment showed that MdBEL1.1 interacted with apple ovate family proteins 6(MdOFP6),and MdBLH3.1 interacted with the MdOFP4,MdOFP6,MdOFP13,and MdOFP16 proteins.Our results provide a strong theoretical basis and a valuable reference for analyzing of the biological functions of MdBLH proteins as transcription factors in apple growth,development,and stress and also for the construction of regulatory networks.展开更多
This paper studies the problem of free bending vibration of annular cylindricaltank partially filled with liquid in the consideration of surface wave.The exactformulae of the mode shape functions and frequencies are d...This paper studies the problem of free bending vibration of annular cylindricaltank partially filled with liquid in the consideration of surface wave.The exactformulae of the mode shape functions and frequencies are deduced.Results can beobtained by means of computer.The analysis shows that the effect of liquid on vibration of annular cylindrical tank is equivalent to different generalized distributivemasses attached to inner and outer cylinders respectively.展开更多
This article lays out a unified theory for dynamics of vehicle-pavement interaction under moving and stochastic loads. It covers three major aspects of the subject: pavement surface, tire-pavement contact forces, and...This article lays out a unified theory for dynamics of vehicle-pavement interaction under moving and stochastic loads. It covers three major aspects of the subject: pavement surface, tire-pavement contact forces, and response of continuum media under moving and stochastic vehicular loads. Under the subject of pavement surface, the spectrum of thermal joints is analyzed using Fourier analysis of periodic function. One-dimensional and two-dimensional random field models of pavement surface are discussed given three different assumptions. Under the subject of tire-pavement contact forces, a vehicle is modeled as a linear system. At a constant speed of travel, random field of pavement surface serves as a stationary stochastic process exciting vehicle vibration, which, in turn, generates contact force at the interface of tire and pavement. The contact forces are analyzed in the time domain and the frequency domains using random vibration theory. It is shown that the contact force can be treated as a nonzero mean stationary process with a normal distribution. Power spectral density of the contact force of a vehicle with walking-beam suspension is simulated as an illustration. Under the subject of response of continuum media under moving and stochastic vehicular loads, both time-domain and frequency-domain analyses are presented for analytic treatment of moving load problem. It is shown that stochastic response of linear continuum media subject to a moving stationary load is a nonstationary process. Such a nonstationary stochastic process can be converted to a stationary stochastic process in a follow-up moving coordinate.展开更多
Data imputation is an essential pre-processing task for data governance,aimed at filling in incomplete data.However,conventional data imputation methods can only partly alleviate data incompleteness using isolated tab...Data imputation is an essential pre-processing task for data governance,aimed at filling in incomplete data.However,conventional data imputation methods can only partly alleviate data incompleteness using isolated tabular data,and they fail to achieve the best balance between accuracy and eficiency.In this paper,we present a novel visual analysis approach for data imputation.We develop a multi-party tabular data association strategy that uses intelligent algorithms to identify similar columns and establish column correlations across multiple tables.Then,we perform the initial imputation of incomplete data using correlated data entries from other tables.Additionally,we develop a visual analysis system to refine data imputation candidates.Our interactive system combines the multi-party data imputation approach with expert knowledge,allowing for a better understanding of the relational structure of the data.This significantly enhances the accuracy and eficiency of data imputation,thereby enhancing the quality of data governance and the intrinsic value of data assets.Experimental validation and user surveys demonstrate that this method supports users in verifying and judging the associated columns and similar rows using theirdomain knowledge.展开更多
Attention deficit and hyperactivity disorder(ADHD) is a disorder characterized by behavioral symptoms including hyperactivity/impulsivity among children,adolescents,and adults.These ADHD related symptoms are influen...Attention deficit and hyperactivity disorder(ADHD) is a disorder characterized by behavioral symptoms including hyperactivity/impulsivity among children,adolescents,and adults.These ADHD related symptoms are influenced by the complex interaction of brain networks which were under explored.We explored age-related brain network differences between ADHD patients and typically developing(TD) subjects using resting state f MRI(rs-f MRI) for three age groups of children,adolescents,and adults.We collected rs-f MRI data from 184 individuals(27 ADHD children and 31 TD children;32 ADHD adolescents and 32 TD adolescents;and 31 ADHD adults and 31 TD adults).The Brainnetome Atlas was used to define nodes in the network analysis.We compared three age groups of ADHD and TD subjects to identify the distinct regions that could explain age-related brain network differences based on degree centrality,a well-known measure of nodal centrality.The left middle temporal gyrus showed significant interaction effects between disease status(i.e.,ADHD or TD) and age(i.e.,child,adolescent,or adult)(P 0.001).Additional regions were identified at a relaxed threshold(P 0.05).Many of the identified regions(the left inferior frontal gyrus,the left middle temporal gyrus,and the left insular gyrus) were related to cognitive function.The results of our study suggest that aberrant development in cognitive brain regions might be associated with age-related brain network changes in ADHD patients.These findings contribute to better understand how brain function influences the symptoms of ADHD.展开更多
Industrial growth in recent years led to air pollution and an increase in concentration of hazardous gases such as O<sub>3</sub> and NO. Developing new materials is important to detect and reduce air pollu...Industrial growth in recent years led to air pollution and an increase in concentration of hazardous gases such as O<sub>3</sub> and NO. Developing new materials is important to detect and reduce air pollutants. While catalytic decomposition and zeolites are traditional ways used to reduce the amount of these gases. We need to develop and explore new promising materials. Covalent organic framework (COF) has become an attractive platform for researcher due to its extended robust covalent bonds, porosity, and crystallinity. In this study, first principal calculations were performed for gases adsorption using COFs containing nitrogen and π-bonds. Different building blocks (BBs) and linkers (LINKs/LINK1 & LINK2) were investigated by means of density functional theory (DFT) calculations with B3LYP and 3-21G basis sets to calculate the binding energies of gases @COF systems. Electrostatic potential maps (ESPM), Mulliken charges and non-covalent interaction (NCI) are used to understand the type of interactions between gas and COFs fragments. O3 was found to bind strongly with COF system in comparison with NO which could make COF a useful selective material for mixed gases environment for sensing and removal application.展开更多
With technological advancements,weapon system development has become increasingly complex and costly.Using modeling and simulation(M&S)technology in the conceptual design stage is effective in reducing the develop...With technological advancements,weapon system development has become increasingly complex and costly.Using modeling and simulation(M&S)technology in the conceptual design stage is effective in reducing the development time and cost of weapons.One way to reduce the complexity and trial-and-error associated with weapon development using M&S technology is to develop combat scenarios to review the functions assigned to new weapons.Although the M&S technology is applicable,it is difficult to analyze how effectively the weapons are functioning,because of the dynamic features inherent in combat scenario modeling,which considers interrelations among different weapon entities.To support review of weapon functions including these characteristics,this study develops a process-based modeling(PBM)method to model the interactions between weapons in the combat scenario.This method includes the following three steps:(1)construct virtual models by converting the weapons and the weapon functions into their corresponding components;(2)generate the combat process from the combat scenario,which is derived from the interrelations among weapons under consideration using reasoning rules;(3)develop a process-based model that describes weapon functions by combining the combat process with virtual models.Then,a PBM system based on this method is implemented.The case study executed on this system shows that it is useful in deriving process-based models from various combat scenarios,analyzing weapon functions using the derived models,and reducing weapon development issues in the conceptual design stage.展开更多
基金The Natural Science Basic Research Plan in Shaanxi Province(No.2017JM5077)the Fundamental Research Funds for the Central Universities under Grant(No.300102259109).
文摘To examine the influence of the structural parameters and working parameters of a double-drum regeneration mixing station on its mixing uniformity,the influence of the discrete element method and response surface method on the uniformity of the aggregate mixing when the interaction between two different factors was analyzed.A mathematical model of the influence of various factors and interactions on the coefficient of variation of the aggregates was established.The matching of each parameter was optimized with the goal of minimizing the coefficient of variation.The results show that when the aggregate particle size is different,the significance of each parameter affecting its mixing uniformity is also different.Moreover,increasing the speed and reducing the axial installation angle of the blade can reduce the coefficient of variation of the three aggregates.To obtain a good mixing uniformity,the mixing-arm phase angle when the drum inclination angle is large should be smaller than the phase angle when the drum inclination angle is small,and the mixing of large particles should not be arranged with a large mixing-arm phase angle.With a blade radial installation angle of 38°,a blade axial installation angle of 35°,a drum inclination angle of 6°,a drum rotation speed of 10 r/min,and a mixing-arm phase angle of 32°,the aggregate as a whole can exhibit the best mixing uniformity.
基金supported by the National Natural Science Foundation of China(10902022,11072055,and 11032008)the Fundamental Research Funds for the Central Universities(DUT13LK49)
文摘In the present study, we reconstructed upper airway and soft palate models of 3 obstructive sleep apnea-hypopnea syndrome(OSAHS) patients with nasal obstruction. The airflow distribution and movement of the soft palate before and after surgery were described by a numerical simulation method. The curative effect of nasal surgery was evaluated for the three patients with OSAHS. The degree of nasal obstruction in the 3 patients was improved after surgery. For 2 patients with mild OSAHS, the upper airway resistance and soft palate displacement were reduced after surgery. These changes contributed to the mitigation of respiratory airflow limitation. For the patient with severe OSAHS, the upper airway resistance and soft palate displacement increased after surgery, which aggravated the airway obstruction. The effcacy of nasal surgery for patients with OSAHS is determined by the degree of improvement in nasal obstruction and whether the effects on the pharynx are beneficial. Numerical simulation results are consistent with the polysomnogram(PSG) test results, chief complaints, and clinical findings, and can indirectly reflect the degree of nasal patency and improvement of snoring symptoms, and further,provide a theoretical basis to solve relevant clinical problems.
基金Supported by a grant from the Chinese Society of Clinical Oncology(No.Y-HR2018-293 and Y-HR2018-294).
文摘Objective The objective of this study was to identify new carcinogenetic hub genes and develop the integration of differentially expressed genes to predict the prognosis of lung cancer.Methods GSE139032 microarray data packages were downloaded from the Gene Expression Omnibus for planning,testing,and review of data.We identified KRT6C,LAMC2,LAMB3,KRT6A,and MYEOV from a key module for validation.Results We found that the five genes were related to a poor prognosis,and the expression levels of these genes were associated with tumor stage.Furthermore,Kaplan-Meier plotter showed that the five hub genes had better prognostic values.The mean levels of methylation in lung adenocarcinoma(LUAD)were significantly lower than those in healthy lung tissues for the hub genes.However,gene set enrichment analysis(GSEA)for single hub genes showed that all of them were immune-related.Conclusion Our findings demonstrated that KRT6C,LAMC2,LAMB3,KRT6A,and MYEOV are all candidate diagnostic and prognostic biomarkers for LUAD.They may have clinical implications in LUAD patients not only for the improvement of risk stratification but also for therapeutic decisions and prognosis prediction.
基金This work was supported by Postdoctoral Foundation of Northwestern Polytechnical University and Science Research FOundation o
文摘A thermodynamic model has been built up for the interactions between molten Ti alloys and oxide molding materials in the way of decomposition and solution of molding materials, then the influences on the reaction free energy changes have been calculated and discussed.
基金Supported by the National Natural Science Foundation of China(21006127)the National Basic Research Program of China(2012CB720500)
文摘Industrial processes are mostly large-scale systems with high order.They use fully centralized control strategy,the parameters of which are difficult to tune.In the design of large-scale systems,the decomposition according to the interaction between input and output variables is the first step and the basis for the selection of control structure.In this paper,the decomposition principle of processes in large-scale systems is proposed for the design of control structure.A new variable pairing method is presented,considering the steady-state information and dynamic response of large-scale system.By selecting threshold values,the related matrix can be transformed into the adjoining matrixes,which directly measure the couple among different loops.The optimal number of controllers can be obtained after decomposing the large-scale system.A practical example is used to demonstrate the validity and feasibility of the proposed interaction decomposition principle in process large-scale systems.
文摘The issue of the extremely imbalanced gender ratio in preschool teachers has received widespread attention,and there are few studies on teacher-child verbal interaction behavior based on gender differences in preschool teachers.This article takes the“Little Light Bulb Is On”,a scientific exploration activity done by 5-6 years old kindergarten students as an example,and uses the improved Flanders Interaction Analysis System(iFIAS)as a tool to analyze the speech interaction behavior of male and female preschool teachers.The research results indicate that there are gender differences in teacher child language interaction between male and female teachers in terms of the atmosphere,the teaching structure,the teaching tendency,the way of raising questions,and the overall trend of interaction.
文摘Chalkiness is an unpleasant trait for rice con-sumer,which is known to be controlled geneti-cally and affected by environment during grainmaturing.We used the model of Additive Main
基金supported by the Natural Science Foundation of China(No.52174232)the Project was supported by Open Research Grant of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining(Nos.EC2022003 and EC2023005)+1 种基金Anhui University of Science and Technology 2023 Graduate Student Innovation Fund(No.2023cx2106)Open Research Grant of Anhui Engineering Research Center for Coal Clean Processing and Carbon Emission Reduction(No.CCCE-2023003).
文摘This study delves into the intricate relationship between iron(Fe)content in kaolinite and its impact on the adsorption behavior of sodium oleate.The effects of different iron concentrations on adsorption energy,hydrogen bond kinetics and adsorption efficiency were studied through simulation and experimental verification.The results show that the presence of iron in the kaolinite structure significantly improves the adsorption capacity of sodium oleate.Kaolinite samples with high iron content have better adsorption properties,lower adsorption energy levels and shorter and stronger hydrogen bonds than pure kaolinite.The optimal concentration of oleic acid ions for achieving maximum adsorption efficiency was identified as 1.2 mmol/L across different kaolinite samples.At this concentration,the adsorption rates and capacities reach their peak,with Fe-enriched kaolinite samples exhibiting notably higher flotation recovery rates.This optimal concentration represents a balance between sufficient oleic acid ion availability for surface interactions and the prevention of self-aggregation phenomena that could hinder adsorption.This study offers promising avenues for optimizing the flotation process in mineral processing applications.
文摘Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.
文摘With a focus on an industrial multivariable system, two subsystems including the flow and the level outputs are analysed and controlled, which have applicability in both real and academic environments. In such a case, at first, each subsystem is distinctively represented by its model, since the outcomes point out that the chosen models have the same behavior as corresponding ones. Then, the industrial multivariable system and its presentation are achieved in line with the integration of these subsystems, since the interaction between them can not actually be ignored. To analyze the interaction presented, the Gershgorin bands need to be acquired, where the results are used to modify the system parameters to appropriate values. Subsequently, in the view of modeling results, the control concept in two different techniques including sequential loop closing control(SLCC) scheme and diagonal dominance control(DDC) schemes is proposed to implement on the system through the Profibus network, as long as the OPC(OLE for process control) server is utilized to communicate between the control schemes presented and the multivariable system. The real test scenarios are carried out and the corresponding outcomes in their present forms are acquired. In the same way, the proposed control schemes results are compared with each other, where the real consequences verify the validity of them in the field of the presented industrial multivariable system control.
基金The project supported by the National Natural Science Foundation of China(10232010)the National Aeronautic Science Fund of China(03A51049)
文摘The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and flows of the starting stroke (when the wake has not developed) with those of a later stroke (when the wake has developed). The following has been shown. (1) The wake effect may increase or decrease the lift and drag at the beginning of a half-stroke (downstroke or upstroke), depending on the wing kinematics at stroke reversal. The reason for this is that at the beginning of the half-stroke, the wing “impinges” on the spanwise vorticity generated by the wing during stroke reversal and the distribution of the vorticity is sensitive to the wing kinematics at stroke reversal. (2) The wake effect decreases the lift and increases the drag in the rest part of the half-stroke. This is because the wing moves in a downwash field induced by previous half-stroke's starting vortex, tip vortices and attached leading edge vortex (these vortices form a downwash producing vortex ring). (3) The wake effect decreases the mean lift by 6%-18% (depending on wing kinematics at stroke reversal) and slightly increases the mean drag. Therefore, it is detrimental to the aerodynamic performance of the flapping wing.
基金National Natural Science Foundation of China(No.42171448)。
文摘Humanities and Social Sciences(HSS) are undergoing the transformation of spatialization and quantification. Geo-computation, with geoinformatics(including RS: Remote Sensing;GIS: Geographical Information System;GNSS: Global Navigation Satellite System), provides effective computational and spatialization methods and tools for HSS. Spatial Humanities and Geo-computation for Social Sciences(SH&GSS) is a field coupling geo-computation, and geoinformatics, with HSS. This special issue accepted a set of contributions highlighting recent advances in methodologies and applications of SH&GSS, which are related to sentiment spatial analysis from social media data, emotional change spatial analysis from news data, spatial analysis of social media related to COVID-19, crime spatiotemporal analysis, “double evaluation” for Land Use/Land Cover(LUCC), Specially Protected Natural Areas(SPNA) analysis, editing behavior analysis of Volunteered Geographic Information(VGI), electricity consumption anomaly detection, First and Last Mile Problem(FLMP) of public transport, and spatial interaction network analysis for crude oil trade network. Based on these related researches, we aim to present an overview of SH&GSS, and propose some future research directions for SH&HSS.
文摘This paper uses a mathematical method to develop an analytical solution to the local buckling behaviour of long rectangular plates resting on tensionless elastic Winkler foundations and under combined uniform longitudinal uniaxial compressive and uniform in-plane shear loads. Fitted formulas are derived for plates with clamped edges and simplified supported edges. Two examples are given to demonstrate the application of the current method: one is a plate on tensionless spring foundations and the other is the contact between the steel sheet and elastic solid foundation. Finite element (FE) analysis is also conducted to validate the analytical results. Good agreement is obtained between the current method and FE analysis.
基金This study was supported by Shandong Provincial Natural Science Foundation,China(Grant No.ZR2019MC071).
文摘BEL1-like homeodomain(BLH)family proteins are homeodomain transcription factors,which are found ubiquitously in plants and play important roles in regulating meristem and flower development.Although BLH proteins have been reported in some plant species,there is very little information available for plants in the Malus genus(e.g.,apple tree:Malus domestica).In the present study,we identified 19 apple MdBLH genes.Phylogenetic analysis revealed that the MdBLH genes could be divided into five groups.Analysis of gene structure showed that MdBLH gene has four exons,and the third exon was 61 bp in length.Chromosomal location analysis suggested that the MdBLH genes are not distributed uniformly on 12 chromosomes.Eleven MdBLH genes were cloned by RT-PCR,and their expression patterns were also determined.Among them,the expression levels of MdBLH4.1 and MdBLH9.1 could be induced by sodium chloride stress,while the expression levels of MdATH1.1,MdBLH8.1,MdBLH8.3,and MdBLH11.1 were down-regulated by such stress.Transcriptional levels of MdATH1.1 and MdBLH7.2 were down-regulated by mannitol stress.The result of yeast two-hybrid experiment showed that MdBEL1.1 interacted with apple ovate family proteins 6(MdOFP6),and MdBLH3.1 interacted with the MdOFP4,MdOFP6,MdOFP13,and MdOFP16 proteins.Our results provide a strong theoretical basis and a valuable reference for analyzing of the biological functions of MdBLH proteins as transcription factors in apple growth,development,and stress and also for the construction of regulatory networks.
文摘This paper studies the problem of free bending vibration of annular cylindricaltank partially filled with liquid in the consideration of surface wave.The exactformulae of the mode shape functions and frequencies are deduced.Results can beobtained by means of computer.The analysis shows that the effect of liquid on vibration of annular cylindrical tank is equivalent to different generalized distributivemasses attached to inner and outer cylinders respectively.
基金sponsored in part by the National Science Foundationby National Natural Science Foundation of China+1 种基金by Ministry of Communication of Chinaby Jiangsu Natural Science Foundation
文摘This article lays out a unified theory for dynamics of vehicle-pavement interaction under moving and stochastic loads. It covers three major aspects of the subject: pavement surface, tire-pavement contact forces, and response of continuum media under moving and stochastic vehicular loads. Under the subject of pavement surface, the spectrum of thermal joints is analyzed using Fourier analysis of periodic function. One-dimensional and two-dimensional random field models of pavement surface are discussed given three different assumptions. Under the subject of tire-pavement contact forces, a vehicle is modeled as a linear system. At a constant speed of travel, random field of pavement surface serves as a stationary stochastic process exciting vehicle vibration, which, in turn, generates contact force at the interface of tire and pavement. The contact forces are analyzed in the time domain and the frequency domains using random vibration theory. It is shown that the contact force can be treated as a nonzero mean stationary process with a normal distribution. Power spectral density of the contact force of a vehicle with walking-beam suspension is simulated as an illustration. Under the subject of response of continuum media under moving and stochastic vehicular loads, both time-domain and frequency-domain analyses are presented for analytic treatment of moving load problem. It is shown that stochastic response of linear continuum media subject to a moving stationary load is a nonstationary process. Such a nonstationary stochastic process can be converted to a stationary stochastic process in a follow-up moving coordinate.
基金Project supported by the Key R&D"Pioneer"Tackling Plan Program of Zhejiang Province,China(No.2023C01119)the"Ten Thousand Talents Plan"Science and Technology Innovation Leading Talent Program of Zhejiang Province,China(No.2022R52044)+1 种基金the Major Standardization Pilot Projects for the Digital Economy(Digital Trade Sector)of Zhejiang Province,China(No.SJ-Bz/2023053)the National Natural Science Foundationof China(No.62132017)。
文摘Data imputation is an essential pre-processing task for data governance,aimed at filling in incomplete data.However,conventional data imputation methods can only partly alleviate data incompleteness using isolated tabular data,and they fail to achieve the best balance between accuracy and eficiency.In this paper,we present a novel visual analysis approach for data imputation.We develop a multi-party tabular data association strategy that uses intelligent algorithms to identify similar columns and establish column correlations across multiple tables.Then,we perform the initial imputation of incomplete data using correlated data entries from other tables.Additionally,we develop a visual analysis system to refine data imputation candidates.Our interactive system combines the multi-party data imputation approach with expert knowledge,allowing for a better understanding of the relational structure of the data.This significantly enhances the accuracy and eficiency of data imputation,thereby enhancing the quality of data governance and the intrinsic value of data assets.Experimental validation and user surveys demonstrate that this method supports users in verifying and judging the associated columns and similar rows using theirdomain knowledge.
基金supported by the Institute for Basic Science[grant No.IBS-R015-D1]the National Research Foundation of Korea(grant No.NRF-2016R1A2B4008545)
文摘Attention deficit and hyperactivity disorder(ADHD) is a disorder characterized by behavioral symptoms including hyperactivity/impulsivity among children,adolescents,and adults.These ADHD related symptoms are influenced by the complex interaction of brain networks which were under explored.We explored age-related brain network differences between ADHD patients and typically developing(TD) subjects using resting state f MRI(rs-f MRI) for three age groups of children,adolescents,and adults.We collected rs-f MRI data from 184 individuals(27 ADHD children and 31 TD children;32 ADHD adolescents and 32 TD adolescents;and 31 ADHD adults and 31 TD adults).The Brainnetome Atlas was used to define nodes in the network analysis.We compared three age groups of ADHD and TD subjects to identify the distinct regions that could explain age-related brain network differences based on degree centrality,a well-known measure of nodal centrality.The left middle temporal gyrus showed significant interaction effects between disease status(i.e.,ADHD or TD) and age(i.e.,child,adolescent,or adult)(P 0.001).Additional regions were identified at a relaxed threshold(P 0.05).Many of the identified regions(the left inferior frontal gyrus,the left middle temporal gyrus,and the left insular gyrus) were related to cognitive function.The results of our study suggest that aberrant development in cognitive brain regions might be associated with age-related brain network changes in ADHD patients.These findings contribute to better understand how brain function influences the symptoms of ADHD.
文摘Industrial growth in recent years led to air pollution and an increase in concentration of hazardous gases such as O<sub>3</sub> and NO. Developing new materials is important to detect and reduce air pollutants. While catalytic decomposition and zeolites are traditional ways used to reduce the amount of these gases. We need to develop and explore new promising materials. Covalent organic framework (COF) has become an attractive platform for researcher due to its extended robust covalent bonds, porosity, and crystallinity. In this study, first principal calculations were performed for gases adsorption using COFs containing nitrogen and π-bonds. Different building blocks (BBs) and linkers (LINKs/LINK1 & LINK2) were investigated by means of density functional theory (DFT) calculations with B3LYP and 3-21G basis sets to calculate the binding energies of gases @COF systems. Electrostatic potential maps (ESPM), Mulliken charges and non-covalent interaction (NCI) are used to understand the type of interactions between gas and COFs fragments. O3 was found to bind strongly with COF system in comparison with NO which could make COF a useful selective material for mixed gases environment for sensing and removal application.
基金Project supported by the Defense Acquisition Program Administration and Agency for Defense Development of the Republic of Korea(Nos.UD110006MD and UD140022PD)。
文摘With technological advancements,weapon system development has become increasingly complex and costly.Using modeling and simulation(M&S)technology in the conceptual design stage is effective in reducing the development time and cost of weapons.One way to reduce the complexity and trial-and-error associated with weapon development using M&S technology is to develop combat scenarios to review the functions assigned to new weapons.Although the M&S technology is applicable,it is difficult to analyze how effectively the weapons are functioning,because of the dynamic features inherent in combat scenario modeling,which considers interrelations among different weapon entities.To support review of weapon functions including these characteristics,this study develops a process-based modeling(PBM)method to model the interactions between weapons in the combat scenario.This method includes the following three steps:(1)construct virtual models by converting the weapons and the weapon functions into their corresponding components;(2)generate the combat process from the combat scenario,which is derived from the interrelations among weapons under consideration using reasoning rules;(3)develop a process-based model that describes weapon functions by combining the combat process with virtual models.Then,a PBM system based on this method is implemented.The case study executed on this system shows that it is useful in deriving process-based models from various combat scenarios,analyzing weapon functions using the derived models,and reducing weapon development issues in the conceptual design stage.