This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algo...This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algorithm's cost-efficiency ratio being not high and the Markov transition probability of the interacting multiple model (IMM) algorithm being difficult to determine exactly. This algorithm realizes the adaptive model set by adaptive grid adjustment, and obtains each model matching degree in the model set by fuzzy logic inference. The simulation results show that the AGFIMM algorithm can effectively improve the accuracy and cost-efficiency ratio of the multiple model algorithm, and as a result is suitable for enineering apolications.展开更多
In the system of Computer Network Collaborative Defense(CNCD),it is difficult to evaluate the trustworthiness of defense agents which are newly added to the system,since they lack historical interaction for trust eval...In the system of Computer Network Collaborative Defense(CNCD),it is difficult to evaluate the trustworthiness of defense agents which are newly added to the system,since they lack historical interaction for trust evaluation.This will lead that the newly added agents could not get reasonable initial trustworthiness,and affect the whole process of trust evaluation.To solve this problem in CNCD,a trust type based trust bootstrapping model was introduced in this research.First,the division of trust type,trust utility and defense cost were discussed.Then the constraints of defense tasks were analyzed based on game theory.According to the constraints obtained,the trust type of defense agents was identified and the initial trustworthiness was assigned to defense agents.The simulated experiment shows that the methods proposed have lower failure rate of defense tasks and better adaptability in the respect of defense task execution.展开更多
基金Foundation item: Supported by the National Nature Science Foundation of China (No. 61074053, 61374114) and the Applied Basic Research Program of Ministry of Transport of China (No. 2011-329-225 -390).
文摘This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algorithm's cost-efficiency ratio being not high and the Markov transition probability of the interacting multiple model (IMM) algorithm being difficult to determine exactly. This algorithm realizes the adaptive model set by adaptive grid adjustment, and obtains each model matching degree in the model set by fuzzy logic inference. The simulation results show that the AGFIMM algorithm can effectively improve the accuracy and cost-efficiency ratio of the multiple model algorithm, and as a result is suitable for enineering apolications.
基金supported by the National Natural Science Foundation of China under Grant No.61170295
文摘In the system of Computer Network Collaborative Defense(CNCD),it is difficult to evaluate the trustworthiness of defense agents which are newly added to the system,since they lack historical interaction for trust evaluation.This will lead that the newly added agents could not get reasonable initial trustworthiness,and affect the whole process of trust evaluation.To solve this problem in CNCD,a trust type based trust bootstrapping model was introduced in this research.First,the division of trust type,trust utility and defense cost were discussed.Then the constraints of defense tasks were analyzed based on game theory.According to the constraints obtained,the trust type of defense agents was identified and the initial trustworthiness was assigned to defense agents.The simulated experiment shows that the methods proposed have lower failure rate of defense tasks and better adaptability in the respect of defense task execution.