The present study screened a human fetal brain cDNA library to find the proteins that interact with mutant superoxide dismutase 1 (SOD1) using a yeast two-hybrid system. Using BLAST software, 15 real proteins which ...The present study screened a human fetal brain cDNA library to find the proteins that interact with mutant superoxide dismutase 1 (SOD1) using a yeast two-hybrid system. Using BLAST software, 15 real proteins which interacted with mutant SOD1 were obtained, including 8 known proteins (protein tyrosine-phosphatase non-receptor type 2, TBCl D4, protein kinase family, splicing factor, arginine/serine-rich 2, SRC protein tyrosine kinase Fyn, β-sarcoglycan; glycine receptor a2, microtubule associated protein/microtubule affinity-regulating kinase 1, ferritin H chain), and 7 unknown proteins. Results demonstrated interaction of mutant SOD1 with microtubule associated protein/microtubule affinity-regulating kinase 1 and β-sarcoglycan.展开更多
The spectral line intensities and line shifts of Lyman and Balmer series for transitions up to n=5 of hydrogen-like ion are studied in plasmas with densities and temperatures in the ranges n_(c)~10^(18)-10^(21)cm^(-3)...The spectral line intensities and line shifts of Lyman and Balmer series for transitions up to n=5 of hydrogen-like ion are studied in plasmas with densities and temperatures in the ranges n_(c)~10^(18)-10^(21)cm^(-3),T_(e)=0.3e1.2 eV respectively.The screened potential used to describe the interaction between charged particles includes the electron exchange-correlation and finite-temperature gradient effects and is valid for both weakly and strongly coupled plasmas.The dependencies of alpha,beta and gamma line shifts of Lyman and Balmer series on plasma density(for fixed temperature)and temperature(for fixed density)are investigated.The results for the H_(a)line shifts are compared with the available high-density experimental data.展开更多
The molecular mechanics/Poisson-Boltzmann surface area(MM/PBSA) method has been widely used in predicting the binding affinity among ligands,proteins,and nucleic acids.However,the accuracy of the predicted binding ene...The molecular mechanics/Poisson-Boltzmann surface area(MM/PBSA) method has been widely used in predicting the binding affinity among ligands,proteins,and nucleic acids.However,the accuracy of the predicted binding energy by the standard MM/PBSA is not always good,especially in highly charged systems.In this work,we take the protein-nucleic acid complexes as an example,and showed that the use of screening electrostatic energy(instead of Coulomb electrostatic energy) in molecular mechanics can greatly improve the performance of MM/PBSA.In particular,the Pearson correlation coefficient of dataset Ⅱ in the modified MM/PBSA(i.e.,screening MM/PBSA) is about 0.52,much better than that(<0.33)in the standard MM/PBSA.Further,we also evaluate the effect of solute dielectric constant and salt concentration on the performance of the screening MM/PBSA.The present study highlights the potential power of the screening MM/PBSA for predicting the binding energy in highly charged bio-systems.展开更多
基金the National Natural Science Foundation of China, No. 30300116
文摘The present study screened a human fetal brain cDNA library to find the proteins that interact with mutant superoxide dismutase 1 (SOD1) using a yeast two-hybrid system. Using BLAST software, 15 real proteins which interacted with mutant SOD1 were obtained, including 8 known proteins (protein tyrosine-phosphatase non-receptor type 2, TBCl D4, protein kinase family, splicing factor, arginine/serine-rich 2, SRC protein tyrosine kinase Fyn, β-sarcoglycan; glycine receptor a2, microtubule associated protein/microtubule affinity-regulating kinase 1, ferritin H chain), and 7 unknown proteins. Results demonstrated interaction of mutant SOD1 with microtubule associated protein/microtubule affinity-regulating kinase 1 and β-sarcoglycan.
基金This work was supported by the National Key Research and Development Program of China(Grant No.2017YFA0402300)National Natural Science Foundation of China(Grants No.11474033,11474032 and 11534011)Science Challenge Project(Grant No.TZ2016001).
文摘The spectral line intensities and line shifts of Lyman and Balmer series for transitions up to n=5 of hydrogen-like ion are studied in plasmas with densities and temperatures in the ranges n_(c)~10^(18)-10^(21)cm^(-3),T_(e)=0.3e1.2 eV respectively.The screened potential used to describe the interaction between charged particles includes the electron exchange-correlation and finite-temperature gradient effects and is valid for both weakly and strongly coupled plasmas.The dependencies of alpha,beta and gamma line shifts of Lyman and Balmer series on plasma density(for fixed temperature)and temperature(for fixed density)are investigated.The results for the H_(a)line shifts are compared with the available high-density experimental data.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874045 and 11774147)。
文摘The molecular mechanics/Poisson-Boltzmann surface area(MM/PBSA) method has been widely used in predicting the binding affinity among ligands,proteins,and nucleic acids.However,the accuracy of the predicted binding energy by the standard MM/PBSA is not always good,especially in highly charged systems.In this work,we take the protein-nucleic acid complexes as an example,and showed that the use of screening electrostatic energy(instead of Coulomb electrostatic energy) in molecular mechanics can greatly improve the performance of MM/PBSA.In particular,the Pearson correlation coefficient of dataset Ⅱ in the modified MM/PBSA(i.e.,screening MM/PBSA) is about 0.52,much better than that(<0.33)in the standard MM/PBSA.Further,we also evaluate the effect of solute dielectric constant and salt concentration on the performance of the screening MM/PBSA.The present study highlights the potential power of the screening MM/PBSA for predicting the binding energy in highly charged bio-systems.