The Learning management system(LMS)is now being used for uploading educational content in both distance and blended setups.LMS platform has two types of users:the educators who upload the content,and the students who ...The Learning management system(LMS)is now being used for uploading educational content in both distance and blended setups.LMS platform has two types of users:the educators who upload the content,and the students who have to access the content.The students,usually rely on text notes or books and video tutorials while their exams are conducted with formal methods.Formal assessments and examination criteria are ineffective with restricted learning space which makes the student tend only to read the educational contents and videos instead of interactive mode.The aim is to design an interactive LMS and examination video-based interface to cater the issues of educators and students.It is designed according to Human-computer interaction(HCI)principles to make the interactive User interface(UI)through User experience(UX).The interactive lectures in the form of annotated videos increase user engagement and improve the self-study context of users involved in LMS.The interface design defines how the design will interact with users and how the interface exchanges information.The findings show that interactive videos for LMS allow the users to have a more personalized learning experience by engaging in the educational content.The result shows a highly personalized learning experience due to the interactive video and quiz within the video.展开更多
In traffic-monitoring systems, numerous vision-based approaches have been used to detect vehicle parameters. However, few of these approaches have been used in waterway transport because of the complexity created by f...In traffic-monitoring systems, numerous vision-based approaches have been used to detect vehicle parameters. However, few of these approaches have been used in waterway transport because of the complexity created by factors such as rippling water and lack of calibration object. In this paper, we present an approach to detecting the parameters of a moving ship in an inland river. This approach involves interactive calibration without a calibration reference. We detect a moving ship using an optimized visual foreground detection algorithm that eliminates false detection in dynamic water scenarios, and we detect ship length, width, speed, and flow. We trialed our parameter-detection technique in the Beijing-Hangzhou Grand Canal and found that detection accuracy was greater than 90% for all parameters.展开更多
Video in language teaching offers exciting possi-bilities to train learners’communicative competence.This article introduces five different techniques in us-ing video in the language class so as to bring about in-ter...Video in language teaching offers exciting possi-bilities to train learners’communicative competence.This article introduces five different techniques in us-ing video in the language class so as to bring about in-teraction between video,students and teacher.展开更多
An analysis of the different types of interaction taking place during a video-class shows thatcommunicative methods stimulate the students’ language learning.Thus video becomes a useful languagelearning tool.
Efficient, interactive foreground/background seg- mentation in video is of great practical importance in video editing. This paper proposes an interactive and unsupervised video object segmentation algorithm named E-G...Efficient, interactive foreground/background seg- mentation in video is of great practical importance in video editing. This paper proposes an interactive and unsupervised video object segmentation algorithm named E-GrabCut con- centrating on achieving both of the segmentation quality and time efficiency as highly demanded in the related filed. There are three features in the proposed algorithms. Firstly, we have developed a powerful, non-iterative version of the optimiza- tion process for each frame. Secondly, more user interaction in the first frame is used to improve the Gaussian Mixture Model (GMM). Thirdly, a robust algorithm for the follow- ing frame segmentation has been developed by reusing the previous GMM. Extensive experiments demonstrate that our method outperforms the state-of-the-art video segmentation algorithm in terms of integration of time efficiency and seg- mentation quality.展开更多
文摘The Learning management system(LMS)is now being used for uploading educational content in both distance and blended setups.LMS platform has two types of users:the educators who upload the content,and the students who have to access the content.The students,usually rely on text notes or books and video tutorials while their exams are conducted with formal methods.Formal assessments and examination criteria are ineffective with restricted learning space which makes the student tend only to read the educational contents and videos instead of interactive mode.The aim is to design an interactive LMS and examination video-based interface to cater the issues of educators and students.It is designed according to Human-computer interaction(HCI)principles to make the interactive User interface(UI)through User experience(UX).The interactive lectures in the form of annotated videos increase user engagement and improve the self-study context of users involved in LMS.The interface design defines how the design will interact with users and how the interface exchanges information.The findings show that interactive videos for LMS allow the users to have a more personalized learning experience by engaging in the educational content.The result shows a highly personalized learning experience due to the interactive video and quiz within the video.
基金supported by Fund of National Science&Technology monumental projects under Grants NO.61401239,NO.2012-364-641-209
文摘In traffic-monitoring systems, numerous vision-based approaches have been used to detect vehicle parameters. However, few of these approaches have been used in waterway transport because of the complexity created by factors such as rippling water and lack of calibration object. In this paper, we present an approach to detecting the parameters of a moving ship in an inland river. This approach involves interactive calibration without a calibration reference. We detect a moving ship using an optimized visual foreground detection algorithm that eliminates false detection in dynamic water scenarios, and we detect ship length, width, speed, and flow. We trialed our parameter-detection technique in the Beijing-Hangzhou Grand Canal and found that detection accuracy was greater than 90% for all parameters.
文摘Video in language teaching offers exciting possi-bilities to train learners’communicative competence.This article introduces five different techniques in us-ing video in the language class so as to bring about in-teraction between video,students and teacher.
文摘An analysis of the different types of interaction taking place during a video-class shows thatcommunicative methods stimulate the students’ language learning.Thus video becomes a useful languagelearning tool.
文摘Efficient, interactive foreground/background seg- mentation in video is of great practical importance in video editing. This paper proposes an interactive and unsupervised video object segmentation algorithm named E-GrabCut con- centrating on achieving both of the segmentation quality and time efficiency as highly demanded in the related filed. There are three features in the proposed algorithms. Firstly, we have developed a powerful, non-iterative version of the optimiza- tion process for each frame. Secondly, more user interaction in the first frame is used to improve the Gaussian Mixture Model (GMM). Thirdly, a robust algorithm for the follow- ing frame segmentation has been developed by reusing the previous GMM. Extensive experiments demonstrate that our method outperforms the state-of-the-art video segmentation algorithm in terms of integration of time efficiency and seg- mentation quality.