期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
INTERANNUAL AND INTERDECADAL VARIATIONS OF LARGE-SCALE MOISTURE SINKS OVER GUANGDONG 被引量:1
1
作者 简茂球 陈蔚翔 +1 位作者 乔云亭 袁卓建 《Journal of Tropical Meteorology》 SCIE 2008年第1期33-36,共4页
The interannual and interdecadal variations of moisture sinks over Guangdong are discussed with the NCEP/NCAR reanalysis data and observed precipitation data from 1958 to 2004. The results indicate that climatically, ... The interannual and interdecadal variations of moisture sinks over Guangdong are discussed with the NCEP/NCAR reanalysis data and observed precipitation data from 1958 to 2004. The results indicate that climatically, the amount of precipitation is larger than that of evaporation in spring and summer. Precipitation and evaporation almost balance each other in autumn and the amount of evaporation is larger than that of precipitation in winter. The interannual signal dominates the variations of moisture sinks in all seasons in Guangdong with a period of three-year oscillation in autumn and winter. Remarkable interdecadal signal characterized by a period of three-decade oscillation can be identified for winter and spring from seasonally averaged moisture sink data and from annually moisture data, with variance percentage larger than 40%. This result indicates that Guangdong is at a transitional stage from positive anomalies to negative anomalies. The moisture sink anomalies in winter and following spring over Guangdong are usually in-phase. Besides, there exist periodic oscillations with periods of 10 to 15 years in summer and autumn. The positive (negative) anomalies of moisture sinks over Guangdong are due to the intensified (weakened) moisture from the tropical areas being transported to the Southern China, accompanied by an intensified (weakened) moisture convergence. 展开更多
关键词 moisture sinks interannual and interdecadal variations GUANGDONG
下载PDF
On the Association between Spring Arctic Sea Ice Concentration and Chinese Summer Rainfall:A Further Study 被引量:44
2
作者 武炳义 张人禾 Bin WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第4期666-678,共13页
In our previous study, a statistical linkage between the spring Arctic sea ice concentration (SIC) and the succeeding Chinese summer rainfall during the period 1968-2005 was identified. This linkage is demonstrated ... In our previous study, a statistical linkage between the spring Arctic sea ice concentration (SIC) and the succeeding Chinese summer rainfall during the period 1968-2005 was identified. This linkage is demonstrated by the leading singular value decomposition (SVD) that accounts for 19% of the co-variance. Both spring SIC and Chinese summer rainfall exhibit a coherent interannual variability and two apparent interdecadal variations that occurred in the late 1970s and the early 1990s. The combined impacts of both spring Arctic SIC and Eurasian snow cover on the summer Eurasian wave train may explain their statistical linkage. In this study, we show that evolution of atmospheric circulation anomalies from spring to summer, to a great extent, may explain the spatial distribution of spring and summer Arctic SIC anomalies, and is dynamically consistent with Chinese summer rainfall anomalies in recent decades. The association between spring Arctic SIC and Chinese summer rainfall on interannual time scales is more important relative to interdecadal time scales. The summer Arctic dipole anomaly may serve as the bridge linking the spring Arctic SIC and Chinese summer rainfall, and their coherent interdecadal variations may reflect the feedback of spring SIC variability on the atmosphere. The summer Arctic dipole anomaly shows a closer relationship with the Chinese summer rainfall relative to the Arctic Oscillation. 展开更多
关键词 spring Arctic sea ice concentration summer rainfall Arctic dipole anomaly interannual and interdecadal variations
下载PDF
Long-term variabilities of thermodynamic structure of the East China Sea Cold Eddy in summer 被引量:14
3
作者 陈永利 胡敦欣 王凡 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2004年第3期224-230,共7页
Based on more than 30 years observed sectional temperature data since the 1960s, and compared with multi-year wind and Changjiang (Yangtze) River discharge data, spatial-temporal variations of the East China Sea Cold ... Based on more than 30 years observed sectional temperature data since the 1960s, and compared with multi-year wind and Changjiang (Yangtze) River discharge data, spatial-temporal variations of the East China Sea Cold Eddy (ECSCE) in summer was analyzed in relationship to ocean circulation and local atmospheric circulation. Empirical Orthogonal Function (EOF) and Singular Value Decomposition (SVD) analyses were applied to this study. The results show that: 1) The ECSCE in summer possesses significant interannual variabilities, which are directly associated with oceanic and atmospheric circulation anomaly. Main fluctuations demonstrate their falling in basically with El Nino events (interannual) and interdecadal variability. 2) The ECSCE in summer is closely related to the variation of the Yellow Sea Warm Current (YSWC) and the Changjiang River discharge. The stronger the YSWC, the more intensive the ECSCE with its center shifting westward, and vice versa. However, a negative correlation between the Changjiang River discharge and the ECSCE strength is shown. The ECSCE was strengthened after the abrupt global climate change affected by the interdecadal variation of the YSWC. 3) SVD analysis suggested a high correlation between the variation of the ECSCE in summer and the anomalous cyclonic atmospheric circulation over the ECS. Intensification of the cyclonic wind strengthens the ECSCE, and vice versa. 4) The cyclonic atmospheric circulation has dominant influence on the interannual variation of the ECSCE, and the influence of the ocean circulation takes the second in. The ECSCE was usually stronger in El Nino years affected by strong cyclonic circulation in the atmosphere. The variation in strength of the ECSCE resulted from the joint effect of both oceanic and atmospheric circulation. 展开更多
关键词 ECSCE interannual and interdecadal YSWC atmospheric circulation
下载PDF
Statistical Reconstruction of the Antarctic Oscillation Index Based on Multiple Proxies
4
作者 ZHANG Zi-Yin GONG Dao-Yi +2 位作者 HE Xue-Zhao LEI Yang-Na FENG Sheng-Hui 《Atmospheric and Oceanic Science Letters》 2010年第5期283-287,共5页
Based on multiple proxies from the Southern Hemisphere, an austral summer (December-January-February: DJF) Antarctic Oscillation Index (AAO) since 1500 A.D. was reconstructed with a focus on interannual to interdecada... Based on multiple proxies from the Southern Hemisphere, an austral summer (December-January-February: DJF) Antarctic Oscillation Index (AAO) since 1500 A.D. was reconstructed with a focus on interannual to interdecadal variability (<50 a). By applying a multivariate regression method, the observational AAO-proxy relations were calibrated and cross-validated for the period of 1957 89. The regressions were employed to compute the DJF-AAO index for 1500 1956. To verify the results, the authors checked the explained variance (r 2 ), the reduction of error (RE), and the standard error (SE). Cross-validation was performed by applying a leave-one-out validation method. Over the entire reconstruction period, the mean values of r 2 , RE, and SE are 59.9%, 0.47, and 0.67, respectively. These statistics indicate that the DJF-AAO reconstruction is relatively skillful and reliable for the last ~460 years. The reconstructed AAO variations on the interannual and interdecadal timescales compare favorably with those of several shorter sea level pressure (SLP)-based AAO indices. The leading periods of the DJF-AAO index over the last 500 years are ~2.4, ~2.6, ~6.3, ~24.1, and ~37.6 years, all of which are significant at the 95% level as estimated by power spectral analysis. 展开更多
关键词 Antarctic Oscillation RECONSTRUCTION PROXY interannual and interdecadal variability
下载PDF
Reappraisal of Asian Summer Monsoon Indices and the Long-Term Variation of Monsoon 被引量:1
5
作者 陈桦 丁一汇 何金海 《Acta meteorologica Sinica》 SCIE 2007年第2期168-178,共11页
The Webster and Yang monsoon index (WYI)-the zonal wind shear between 850 and 200 hPa was calculated and modified 5n the basis of NCEP/NCAR reanalysis data. After analyzing the circulation and divergence fields of 1... The Webster and Yang monsoon index (WYI)-the zonal wind shear between 850 and 200 hPa was calculated and modified 5n the basis of NCEP/NCAR reanalysis data. After analyzing the circulation and divergence fields of 150-100 and 200 hPa, however, we found that the 200-hPa level could not reflect the real change of the upper-tropospheric circulation of Asian summer monsoon, especially the characteristics and variation of the tropical easterly jet which is the most important feature of the upper-tropospheric circulation. The zonal wind shear Uss0-U050+100) is much larger than Uss0-U200, and thus it can reflect the strength of monsoon more appropriately. In addition, divergence is the largest at 150 hPa rather than 200 hPa, so 150 hPa in the upper-troposphere can reflect the coupling of the monsoon system. Therefore, WYI is redefined as DHI, i.e., IDH=U850^* - U(150+100)^*, which is able to characterize the variability of not only the intensity of the center of zonal wind shear in Asia, but also the monsoon system in the upper and lower troposphere. DHI is superior to WYI in featuring the long-term variation of Asian summer monsoon as it indicates there is obvious interdecadal variation in the Asian summer monsoon and the climate abrupt change occurred in 1980. The Asian summer monsoon was stronger before 1980 and it weakened after then due to the weakening of the easterly in the layer of 150-100 hPa, while easterly at 200 hPa did not weaken significantly. After the climate jump year in general, easterly in the upper troposphere weakened in Asia, indicating the weakening of summer monsoon; the land-sea pressure difference and thermal difference reduced, resulting in the weakening of monsoon; the corresponding upper divergence as well as the water vapor transport decreased in Indian Peninsula, central Indo-China Peninsula, North China, and Northeast China, indicating the weakening of summer monsoon as well. The difference between NCEP/NCAR and ERA-40 reanalysis data in studying the intensity and long-term variation of Asian summer monsoon is also compared in the end for reference. 展开更多
关键词 monsoon indices interannual and interdecadal variation climate abrupt change
原文传递
Variations of Meiyu Indicators in the Yangtze-Huaihe River Basin during 1954-2003 被引量:6
6
作者 张艳霞 翟盘茂 钱永甫 《Acta meteorologica Sinica》 SCIE 2005年第4期479-484,共6页
To better understand climate variations of Meiyu, some new indicators for theonset and retreat dates, duration, and Meiyu precipitation in the Yangtze-Huaihe River valley areobjectively developed by using observed dai... To better understand climate variations of Meiyu, some new indicators for theonset and retreat dates, duration, and Meiyu precipitation in the Yangtze-Huaihe River valley areobjectively developed by using observed daily precipitation data from 230 stations in eastern Chinaduring 1954-2003. The rainy season onset and retreat dates in each station can be denned in terms ofthresholds for rainfall intensity and persistence. Then, the onset and retreat dates of the Meiyufor the Yangtze-Huaihe River basin have been determined when more than 40% of stations reach thefirst rainy season thresholds in the study region. Based on the indicators of Meiyu in theYangtze-Huaihe River basin, variations of Meiyu rainfall during 1954-2003 are analyzed. The resultssuggest that Meiyu rainfall in the Yangtze-Huaihe River basin has increased in recent 50 years. Inaddition, interannual and interdecadal variability of Meiyu is also obvious. All the indicatorsdisplay a predominant period of about 3 years. 展开更多
关键词 yangtze-huaihe river basin MEIYU interannual and interdecadal variability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部