The band offsets for a Zn1-xin Mgxin Se/Zn1-xout Mgxout Se quantum well heterostructure are determined using the model solid theory. The heavy hole exciton binding energies are investigated with various Mg alloy conte...The band offsets for a Zn1-xin Mgxin Se/Zn1-xout Mgxout Se quantum well heterostructure are determined using the model solid theory. The heavy hole exciton binding energies are investigated with various Mg alloy contents. The effect of mismatch between the dielectric constants between the well and the barrier is taken into account. The dependence of the excitonic transition energies on the geometrical confinement and the Mg alloy is discussed. Non-linear optical properties are determined using the compact density matrix approach. The linear, third order non-linear optical absorption coefficient values and the refractive index changes of the exciton are calculated for different concentrations of magnesium. The results show that the occurred blue shifts of the resonant peak due to the Mg incorporation give the information about the variation of two energy levels in the quantum well width.展开更多
文摘The band offsets for a Zn1-xin Mgxin Se/Zn1-xout Mgxout Se quantum well heterostructure are determined using the model solid theory. The heavy hole exciton binding energies are investigated with various Mg alloy contents. The effect of mismatch between the dielectric constants between the well and the barrier is taken into account. The dependence of the excitonic transition energies on the geometrical confinement and the Mg alloy is discussed. Non-linear optical properties are determined using the compact density matrix approach. The linear, third order non-linear optical absorption coefficient values and the refractive index changes of the exciton are calculated for different concentrations of magnesium. The results show that the occurred blue shifts of the resonant peak due to the Mg incorporation give the information about the variation of two energy levels in the quantum well width.