期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Hydraulic fracture geometry and proppant distribution in thin interbedded shale oil reservoirs
1
作者 ZOU Yushi SHI Shanzhi +4 位作者 ZHANG Shicheng LI Jianmin WANG Fei WANG Junchao ZHANG Xiaohuan 《Petroleum Exploration and Development》 CSCD 2022年第5期1185-1194,共10页
Small-scale true triaxial sand fracturing experiments are conducted on thin interbedded shale samples made from cores of Permian Lucaogou Formation shale oil reservoir in Jimsar sag, Junggar Basin, NW China. Combined ... Small-scale true triaxial sand fracturing experiments are conducted on thin interbedded shale samples made from cores of Permian Lucaogou Formation shale oil reservoir in Jimsar sag, Junggar Basin, NW China. Combined with high-precision CT scanning digital core model reconstruction technology, hydraulic fracture geometry and proppant distribution in thin interbedded shale oil reservoirs are studied. The research shows that: In thin interbedded shale oil reservoir, the interlayer difference of rock mechanics and the interlayer interface near the wellbore cannot restrain the growth of fracture height effectively, but has a significant impact on the fracture width distribution in the fracture height direction. Hydraulic fractures in these reservoirs tend to penetrate into the adjacent layer in “step-like” form, but have a smaller width at the interface deflection, which hinders the transport of proppant in vertical direction, resulting in a poor effect of layer-crossing growth. In shale layers with dense laminae, hydraulic fractures tend to form “丰” or “井” shapes. If the perforated interval is large in rock strength and high in breakdown pressure, the main fracture is fully developed initially, large in width, and supported by enough sand. In contrast, if the perforated interval is low in strength and rich in laminae, the fracturing fluid filtration loss is large, the breakdown pressure is low, the main fracture will not open wide initially, and likely to have sand plugging. Proppant is mainly concentrated in the main hydraulic fractures with large width near the perforated layer, activated laminae, branch fractures and fractures in adjacent layers contain only a small amount of(or zero) proppant. The proppant is placed in a limited range on the whole. The limit width of fracture that proppant can enter is about 2.7 times the proppant particle size. 展开更多
关键词 shale oil thin interbedded reservoir rock mechanics lithologic interface hydraulic fracturing fracture shape proppant distribution
下载PDF
Three-component seismic data in thin interbedded reservoir exploration
2
作者 张丽艳 王彦春 裴江云 《Applied Geophysics》 SCIE CSCD 2015年第1期79-85,122,共8页
We present the first successful application of three-component seismic data to thin interbedded reservoir characterization in the Daqing placanticline of the LMD oilfield. The oilfield has reached the final high water... We present the first successful application of three-component seismic data to thin interbedded reservoir characterization in the Daqing placanticline of the LMD oilfield. The oilfield has reached the final high water cut stage and the principal problem is how to recognize the boundaries of sand layers that are thicker than 2 m. Conventional interpretation of single PP-wave seismic data results in multiple solutions, whereas the introduction of PS-wave enhances the reliability of interpretation. We analyze the gas reservoir characteristics by joint PP- and PS-waves, and use the amplitude and frequency decomposition attributes to delineate the gas reservoir boundaries because of the minimal effect of fl uids on S-wave. We perform joint inversion of PP- and PS-waves to obtain V P/V S, λρ, and μρ and map the lithology changes by using density, λρ, and μρ. The 3D–3C attribute λρ slices describe the sand layers distribution, while considering the well log data, and point to favorable region for tapping the remaining oil. 展开更多
关键词 3D–3C thin interbedded reservoirs gas reservoir characterization joint inversion tapping remaining oil
下载PDF
Theoretical Study on Quantitative Characterization of Interlayer Interference in Multi-Layer Commingled Production 被引量:1
3
作者 Pengfei Mu Shaopeng Wang +2 位作者 Jie Tan Hanqing Zhao Li’an Zhang 《Journal of Power and Energy Engineering》 2021年第4期21-29,共9页
X oilfield is a typical layered reservoir with a large vertical span and many oil-bearing formations. There are significant differences in reservoir types and fluid properties among various formations. The interlayer ... X oilfield is a typical layered reservoir with a large vertical span and many oil-bearing formations. There are significant differences in reservoir types and fluid properties among various formations. The interlayer interference is severe in the development process. At present, the interlayer interference research based on dynamic monitoring data cannot meet development adjustment needs. Combined with the field test results, through the indoor physical simulation experiment method, dynamic inversion method, and reservoir engineering method, this paper analyzes the main control factors and interference mechanism of interlayer interference, studies the variation law of interference coefficient, improves and forms the quantitative characteristic Theory of interlayer interference in multi-layer commingled production, and provides theoretical guidance for the total adjustment of the middle strata division in the oilfield. 展开更多
关键词 Thin interbedded Reservoir Multi-Layer Production interbedded Interference Quantitative Characterization Theoretical Research
下载PDF
The law of fracture propagation and intersection in zipper fracturing of deep shale gas wells
4
作者 WANG Qiang WANG Yufeng +3 位作者 HU Yongquan ZHAO Jinzhou SONG Yi SHEN Cheng 《Petroleum Exploration and Development》 SCIE 2024年第5期1316-1326,共11页
In response to the unclear understanding of fracture propagation and intersection interference in zipper fracturing under the factory development model of deep shale gas wells,a coupled hydro-mechanical model for zipp... In response to the unclear understanding of fracture propagation and intersection interference in zipper fracturing under the factory development model of deep shale gas wells,a coupled hydro-mechanical model for zipper fracturing considering the influence of natural fracture zones was established based on the finite element–discrete element method.The reliability of the model was verified using experimental data and field monitoring pressure increase data.Taking the deep shale gas reservoir in southern Sichuan as an example,the propagation and interference laws of fracturing fractures under the influence of natural fracture zones with different characteristics were studied.The results show that the large approaching angle fracture zone has a blocking effect on the forward propagation of fracturing fractures and the intersection of inter well fractures.During pump shutdown,hydraulic fractures exhibit continued expansion behavior under net pressure driving.Under high stress difference,as the approaching angle of the fracture zone increases,the response well pressure increase and the total length of the fractured fracture show a trend of first decreasing and then increasing,and first increasing and then decreasing,respectively.Compared to small approach angle fracture zones,natural fracture zones with large approach angles require longer time and have greater difficulty to intersect.The width of fractures and the length of natural fractures are negatively and positively correlated with the response well pressure increase,respectively,and positively and negatively correlated with the time required for intersection,the total length of hydraulic fractures,and fracturing efficiency,respectively.As the displacement distance of the well increases,the probability of fracture intersection decreases,but the regularity between displacement distance and the response well pressure increase and the total length of fractures is not obvious. 展开更多
关键词 thin sand-mud interbedded reservoir fracture penetration fracturing simulation experiment numerical simulation fracture penetration discrimination criterion fracturing performance evaluation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部