In order to provide ultraviolet barrier, antifungal and antibacterial properties, nano-zinc oxide (ZnO) was added to lamellar zirconium phosphate (ZrP). The phosphate was synthesized via reaction of zirconium oxychlor...In order to provide ultraviolet barrier, antifungal and antibacterial properties, nano-zinc oxide (ZnO) was added to lamellar zirconium phosphate (ZrP). The phosphate was synthesized via reaction of zirconium oxychloride octahydrate and phosphoric acid following its chemical modification with Jeffamine and nano-ZnO. Diffractometric, morphological, thermal, structural and relaxometric evaluations were conducted. Fourier transform infrared spectroscopy (FTIR) revealed increase of the area between 4000 - 3000 cm<sup>-1</sup> due to the formation of ionic specie PO? <sup>+</sup>NH<sub>3</sub>-[C-(H)(CH<sub>3</sub>)-CH<sub>2</sub>-O-(C-(H)(CH<sub>3</sub>)-CH<sub>2</sub>-O)<sub>8</sub>-(CH<sub>2</sub>-CH<sub>2</sub>-O-CH<sub>3</sub>)] and nano-ZnO particles. Wide-angle X-ray diffraction indicated that intercalation of Jeffamine was successful. Thermogravimetry confirmed that nano-ZnO particle forced the expulsion of Jeffamine outside ZrP galleries. Scanning electron microscopy evidenced the Jeffamine intercalation and sample heterogeneity. Hydrogen molecular relaxation indicated the increase of molecular rigidity owing to the formation of ionic specie and the addition of nano-ZnO particles. It was postulated that a multifunctional and miscellaneous material constituted by as prepared ZrP, some delaminated ZrP platelets and nano-ZnO particles was achieved. The material has potential for usage as filler in polymeric composites.展开更多
Zirconium proline-N-methylphosphonate-phosphate (α-ZPMPP) was prepared in the presence of HF for the first time. The a-ZPMPP sample is highly crystallized with interlayer distance of 1.52 nm. The interlayer distance ...Zirconium proline-N-methylphosphonate-phosphate (α-ZPMPP) was prepared in the presence of HF for the first time. The a-ZPMPP sample is highly crystallized with interlayer distance of 1.52 nm. The interlayer distance of complex of α-ZPMPP with n-butylamine (α-ZPMPP-BA) is in 0.45 nm larger than that of α-ZPMPP. The α-ZPMPP possesses different intercalation behavior of host-guest compound from α-ZP.展开更多
In this work, a new method of a series of ion liquids (ILs) 1-alkyl-3-methylimidazolium chloride [Cnmim]Cl (n = 2, 4, 6, 8) intercalation into layered zirconium phosphates was investigated. It was found that the α-Zr...In this work, a new method of a series of ion liquids (ILs) 1-alkyl-3-methylimidazolium chloride [Cnmim]Cl (n = 2, 4, 6, 8) intercalation into layered zirconium phosphates was investigated. It was found that the α-ZrP·2BA (i.e. pre-intercalated BA was arranged in a bilayer mode in the galleries of α-ZrP) was a suitable host for intercalation ILs: ILs was inserted through exchanging pre-intercalated BA. And the intercalation orientation was investigated by use of X-ray diffraction (XRD) experiments and molecular modeling calculation.展开更多
Zinc and silver compounds have been studied because they have ultraviolet light barrier properties and bactericidal action, respectively. Materials with multifunctional characteristics have been sought to produce poly...Zinc and silver compounds have been studied because they have ultraviolet light barrier properties and bactericidal action, respectively. Materials with multifunctional characteristics have been sought to produce polymeric nanocomposites. In this work, the chemical modification of titanium phosphate (TiP) was carried out through a route with successive intercalations. TiP was synthesized and consecutively pre-expanded with ethylamine and pyromellitic acid. Then it was modified with zinc acetate and silver nitrate. The final product was characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, wide-angle X-ray diffractometry, field emission scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and thermogravimetry. Infrared revealed dislocation and appearance of bands according to the intercalating agent. Inorganic salts interfered in the crystallization and melting processes of pyromellitic acid. Vanishing of the TiP hkl plane and variation and appearance of new crystallographic planes at low diffraction angles induced intercalation. SEM showed agglomerated structures. New thermal degradation events at higher temperatures endorsed the formation of zinc and silver carboxylate salts. We concluded that a new miscellaneous and multifunctional matter was achieved.展开更多
The layer structured zirconium phosphate (ZrP) can be intercalated with atoms, molecules, small organic groups and even polymers. The structures and properties of the ZrP intercalation compounds can be deliberately ...The layer structured zirconium phosphate (ZrP) can be intercalated with atoms, molecules, small organic groups and even polymers. The structures and properties of the ZrP intercalation compounds can be deliberately tuned, leading to promising potential applications in many fields. This article provides a brief review on the experimental results of the ZrP intercalation compounds, with the focus on the polymer/α-zirconium phosphate (α-ZrP) nano-composites. The computer simulations of the ZrP intercalation compounds at the atomic level play a significant role in designing and understanding the properties of ZrP, and in the promotion of the applications of compounds.展开更多
文摘In order to provide ultraviolet barrier, antifungal and antibacterial properties, nano-zinc oxide (ZnO) was added to lamellar zirconium phosphate (ZrP). The phosphate was synthesized via reaction of zirconium oxychloride octahydrate and phosphoric acid following its chemical modification with Jeffamine and nano-ZnO. Diffractometric, morphological, thermal, structural and relaxometric evaluations were conducted. Fourier transform infrared spectroscopy (FTIR) revealed increase of the area between 4000 - 3000 cm<sup>-1</sup> due to the formation of ionic specie PO? <sup>+</sup>NH<sub>3</sub>-[C-(H)(CH<sub>3</sub>)-CH<sub>2</sub>-O-(C-(H)(CH<sub>3</sub>)-CH<sub>2</sub>-O)<sub>8</sub>-(CH<sub>2</sub>-CH<sub>2</sub>-O-CH<sub>3</sub>)] and nano-ZnO particles. Wide-angle X-ray diffraction indicated that intercalation of Jeffamine was successful. Thermogravimetry confirmed that nano-ZnO particle forced the expulsion of Jeffamine outside ZrP galleries. Scanning electron microscopy evidenced the Jeffamine intercalation and sample heterogeneity. Hydrogen molecular relaxation indicated the increase of molecular rigidity owing to the formation of ionic specie and the addition of nano-ZnO particles. It was postulated that a multifunctional and miscellaneous material constituted by as prepared ZrP, some delaminated ZrP platelets and nano-ZnO particles was achieved. The material has potential for usage as filler in polymeric composites.
文摘Zirconium proline-N-methylphosphonate-phosphate (α-ZPMPP) was prepared in the presence of HF for the first time. The a-ZPMPP sample is highly crystallized with interlayer distance of 1.52 nm. The interlayer distance of complex of α-ZPMPP with n-butylamine (α-ZPMPP-BA) is in 0.45 nm larger than that of α-ZPMPP. The α-ZPMPP possesses different intercalation behavior of host-guest compound from α-ZP.
文摘In this work, a new method of a series of ion liquids (ILs) 1-alkyl-3-methylimidazolium chloride [Cnmim]Cl (n = 2, 4, 6, 8) intercalation into layered zirconium phosphates was investigated. It was found that the α-ZrP·2BA (i.e. pre-intercalated BA was arranged in a bilayer mode in the galleries of α-ZrP) was a suitable host for intercalation ILs: ILs was inserted through exchanging pre-intercalated BA. And the intercalation orientation was investigated by use of X-ray diffraction (XRD) experiments and molecular modeling calculation.
文摘Zinc and silver compounds have been studied because they have ultraviolet light barrier properties and bactericidal action, respectively. Materials with multifunctional characteristics have been sought to produce polymeric nanocomposites. In this work, the chemical modification of titanium phosphate (TiP) was carried out through a route with successive intercalations. TiP was synthesized and consecutively pre-expanded with ethylamine and pyromellitic acid. Then it was modified with zinc acetate and silver nitrate. The final product was characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, wide-angle X-ray diffractometry, field emission scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and thermogravimetry. Infrared revealed dislocation and appearance of bands according to the intercalating agent. Inorganic salts interfered in the crystallization and melting processes of pyromellitic acid. Vanishing of the TiP hkl plane and variation and appearance of new crystallographic planes at low diffraction angles induced intercalation. SEM showed agglomerated structures. New thermal degradation events at higher temperatures endorsed the formation of zinc and silver carboxylate salts. We concluded that a new miscellaneous and multifunctional matter was achieved.
基金supported by the National Natural Science Foundation of China(Grant No.51272009)
文摘The layer structured zirconium phosphate (ZrP) can be intercalated with atoms, molecules, small organic groups and even polymers. The structures and properties of the ZrP intercalation compounds can be deliberately tuned, leading to promising potential applications in many fields. This article provides a brief review on the experimental results of the ZrP intercalation compounds, with the focus on the polymer/α-zirconium phosphate (α-ZrP) nano-composites. The computer simulations of the ZrP intercalation compounds at the atomic level play a significant role in designing and understanding the properties of ZrP, and in the promotion of the applications of compounds.
文摘通过挤出注塑工艺制备了α-磷酸锆(α-Zr P)改性的热塑性淀粉塑料,研究了不同含量的α-Zr P对其拉伸强度、冲击强度、耐水及转矩流变性能的影响。结果表明,当α-Zr P含量为0.2%时,淀粉塑料的拉伸强度从未加时的1.94 MPa达到最高的4.5 MPa,断裂伸长率有所下降;冲击强度由50.4 k J/m2增加到55.32 k J/m2;表面接触角由46.34°增加到70.46°,耐水性改善明显;转矩流变曲线表明此时具有较高的峰值扭矩,加工性能有所下降。