The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and v...The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and voltage violations.To address these problems,we propose a coordinated planning method for flexible interconnections and energy storage systems(ESSs)to improve the accommodation capacity of DPVs.First,the power-transfer characteristics of flexible interconnection and ESSs are analyzed.The equipment costs of the voltage source converters(VSCs)and ESSs are also analyzed comprehensively,considering the differences in installation and maintenance costs for different installation locations.Second,a bilevel programming model is established to minimize the annual comprehensive cost and yearly total PV curtailment capacity.Within this framework,the upper-level model optimizes the installation locations and capacities of the VSCs and ESSs,whereas the lower-level model optimizes the operating power of the VSCs and ESSs.The proposed model is solved using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-II).The effectiveness of the proposed planning method is validated through an actual LVDN scenario,which demonstrates its advantages in enhancing PV accommodation capacity.In addition,the economic benefits of various planning schemes with different flexible interconnection topologies and different PV grid-connected forms are quantitatively analyzed,demonstrating the adaptability of the proposed coordinated planning method.展开更多
Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical...Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy stor-age devices at all technology readiness levels.Due to various challenging issues,especially limited stability,nano-and micro-structured(NMS)electrodes undergo fast electrochemical performance degradation.The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement,even though it only occupies comple-mentary and facilitating components for the main mechanism.However,extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies.This review will aim at highlighting these NMS scaffold design strategies,summariz-ing their corresponding strengths and challenges,and thereby outlining the potential solutions to resolve these challenges,design principles,and key perspectives for future research in this field.Therefore,this review will be one of the earliest reviews from this viewpoint.展开更多
The transition to sustainable energy systems is one of the defining challenges of our time, necessitating innovations in how we generate, distribute, and manage electrical power. Micro-grids, as localized energy hubs,...The transition to sustainable energy systems is one of the defining challenges of our time, necessitating innovations in how we generate, distribute, and manage electrical power. Micro-grids, as localized energy hubs, have emerged as a promising solution to integrate renewable energy sources, ensure energy security, and improve system resilience. The Autonomous multi-factor Energy Flow Controller (AmEFC) introduced in this paper addresses this need by offering a scalable, adaptable, and resilient framework for energy management within an on-grid micro-grid context. The urgency for such a system is predicated on the increasing volatility and unpredictability in energy landscapes, including fluctuating renewable outputs and changing load demands. To tackle these challenges, the AmEFC prototype incorporates a novel hierarchical control structure that leverages Renewable Energy Sources (RES), such as photovoltaic systems, wind turbines, and hydro pumps, alongside a sophisticated Battery Management System (BMS). Its prime objective is to maintain an uninterrupted power supply to critical loads, efficiently balance energy surplus through hydraulic storage, and ensure robust interaction with the main grid. A comprehensive Simulink model is developed to validate the functionality of the AmEFC, simulating real-world conditions and dynamic interactions among the components. The model assesses the system’s reliability in consistently powering critical loads and its efficacy in managing surplus energy. The inclusion of advanced predictive algorithms enables the AmEFC to anticipate energy production and consumption trends, integrating weather forecasting and inter-controller communication to optimize energy flow within and across micro-grids. This study’s significance lies in its potential to facilitate the seamless incorporation of RES into existing power systems, thus propelling the energy sector towards a more sustainable, autonomous, and resilient future. The results underscore the potential of such a system to revolutionize energy management practices and highlight the importance of smart controller systems in the era of smart grids.展开更多
This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(...This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(ASEAN)Power Grid.This study focuses on modeling and evaluating the dynamic performance of the interconnected system,considering the high penetration of renewable sources.Power flow,small signal stability,and transient stability analyses were conducted to assess the ability of the proposed linked power system models to withstand small and large disturbances,utilizing the Power Systems Analysis Toolbox(PSAT)software in MATLAB.All components used in the model are documented in the PSAT library.Currently,there is a lack of publicly available studies regarding the implementation of this specific system.Additionally,the study investigates the behavior of a system with a high penetration of renewable energy sources.Based on the findings,this study concludes that a system is generally stable when interconnection is realized,given its appropriate location and dynamic component parameters.Furthermore,the critical eigenvalues of the system also exhibited improvement as the renewable energy sources were augmented.展开更多
In recent years,primary energy consumption in China’s urban areas has increased rapidly,facing the problems of extensive use of energy,high energy consumption and insufficient intensified use of energy resources.Impr...In recent years,primary energy consumption in China’s urban areas has increased rapidly,facing the problems of extensive use of energy,high energy consumption and insufficient intensified use of energy resources.Improving multienergy supply,increasing the proportion of clean energy and integrated energy efficiency are the main goals of urban development.The integrated energy system with multi-functional synergy and open trading will become one of the new directions for the development of new urban energy systems.This paper summarizes the main problems faced by the current towns and the characteristics of the new urban energy system,analyzes the development of new urban energy system from three aspects including energy interconnection hub infrastructure construction,energy management platform construction and energy value sharing,and forecasts the future development direction of new urban energy systems.展开更多
In the context of constructing Global Energy Interconnection(GEI), energy storage technology, as one of the important basic supporting technologies in power system, will play an important role in the energy configurat...In the context of constructing Global Energy Interconnection(GEI), energy storage technology, as one of the important basic supporting technologies in power system, will play an important role in the energy configuration and optimization. Based on the most promising battery energy storage technology, this paper introduces the current status of the grid technology, the application of large-scale energy storage technology and the supporting role of battery energy storage for GEI. Based on several key technologies of large-scale battery energy storage system, preliminary analysis of the standard system construction of energy storage system is made, and the future prospect is put forward.展开更多
The European power grid is one of the largest regional interconnected power grids in the world.It realizes a multinational grid operation,which is rare.The total installed capacity of the European power grid is the la...The European power grid is one of the largest regional interconnected power grids in the world.It realizes a multinational grid operation,which is rare.The total installed capacity of the European power grid is the largest throughout the world.In addition,the integration and utilization of renewable energy in this grid is a great benchmark for other countries and can help promote energy transformation and achieve a high proportion of renewable energy consumption.Based on the analysis of the existing status of the European interconnected power grid and the development history of this power grid,this paper summarizes four key development stages of the European power grid.In addition,the characteristics of each stage and the development prospect of the European power grid are analyzed.On this basis,this paper gives suggestions for the development and construction of China’s energy internet;this can provide valuable reference for further studies on China’s energy internet.展开更多
Climate change and air pollution are primarily caused by the combustion and utilization of fossil fuels.Both climate change and air pollution cause health problems.Based on the development of China,it is extremely imp...Climate change and air pollution are primarily caused by the combustion and utilization of fossil fuels.Both climate change and air pollution cause health problems.Based on the development of China,it is extremely important to explore the synergies of the energy transition,CO_(2) reduction,air pollution control,and health improvement under the target of carbon peaking before 2030 and carbon neutrality before 2060.This study introduces the policy evolution and research progress related to energy,climate change,and the environment in China and proposes a complete energy-climate-air-health mechanism framework.Based on the MESSAGE-GLOBIOM integrated assessment model,emission inventory and chemical transport model,and exposure-response function,a comprehensive assessment method of energy-climate-air-health synergies was established and applied to quantify the impacts of Chinese Energy Interconnection Carbon Neutrality(CEICN)scenario.The results demonstrate that,by 2060,the SO_(2),NO_(x) and PM_(2.5) emissions are estimated to be reduced by 91%,85%,and 90%respectively compared to the business-as-usual(BAU)scenario.The direct health impacts brought by achieving the goal of carbon neutrality will drive the proactive implementation of more emission reduction measures and bring greater benefits to human health.展开更多
With the wide application of renewable energy power generation technology,the distribution network presents the characteristics of multi-source and complex structure.There are potential risks in the stability of power...With the wide application of renewable energy power generation technology,the distribution network presents the characteristics of multi-source and complex structure.There are potential risks in the stability of power system,and the problem of power quality is becoming more and more serious.This paper studies and proposes a power optimization cooperative control strategy for flexible fast interconnection device with energy storage,which combines the flexible interconnection technology with the energy storage device.The primary technology is to regulate the active and reactive power of the converter.By comparing the actual power value of the converter with the reference value,the proportional integral(PI)controller is used for correction,and the current components of d and q axes are obtained and input to the converter as the reference value of the current inner loop.The control strategy in this paper can realize power mutual aid between feeders,and at the same time,the energy storage device can provide or absorb a certain amount of power for feeders,so that the power grid can realize stable operation in a certain range.展开更多
When transnationalized electricity trade is conducted in the context of Global Energy Interconnection(GEI),the transaction settlement usually has a long cycle and high cost and is influenced by the volatility of the e...When transnationalized electricity trade is conducted in the context of Global Energy Interconnection(GEI),the transaction settlement usually has a long cycle and high cost and is influenced by the volatility of the exchange rate.It is thus necessary to overcome the problems associated with the transaction settlement,change in the trading model data,and trading strategy in the transnational transaction deduction.To overcome the problem of trade settlement,this paper proposes the use of a digital currency(energy currency)for the cross-border electricity trading settlement based on the special drawing rights of the International Monetary Fund,which is controlled by the Global Energy Interconnection Development and Cooperation Organization(GEIDCO),to enable the proposed currency to become a stable digital currency.The traders can use the energy coins as a unit of currency for quotes,combined with the data pertaining to the changes in the energy information obtained from the GEI framework and data regarding the optimally extrapolated reference trading indicators.To realize the implementation of the multi-trader concurrent transaction deduction using a microservice architecture,this paper proposes a method of computing the microservice and synchronous interaction among the traders,based on the database table data,because the large amount of computation is required to be accomplished asynchronously with a single process.The key technology behind these cross-national electricity trading simulations can not only enable the GEI transnational traders to performed daily real-time trading,but it also demonstrates the advantages of the rapid settlement of the energy currency and the realization of a stable payment in the global energy interconnection cross-border electricity trading.展开更多
The problematic of energy management, particularly in terms of resources control and efficiency, has become in the space of a few years an eminently strategic subject. Its implementation is both complex and exciting a...The problematic of energy management, particularly in terms of resources control and efficiency, has become in the space of a few years an eminently strategic subject. Its implementation is both complex and exciting as the prospects are promising, especially in relation with smart grids technologies. The deregulation of the electricity market, the high cost of storage, and the new laws on energy transition incite some significant users (collectivities, cities, regions, etc.) to form themselves into local producers in order to gain autonomy and reduce their energy bills. Thus, they may have their own sources (classic and/or renewable energy sources) to satisfy their needs and sell their excess production instead of storing it. In this idea, the territorial interconnection principle offers several advantages (energy efficiency, environmental protection, better economic balance). The main challenge of such systems is to ensure good energy management. Therefore, power distribution strategy must be implemented by matching the supply and the demand. Such systems have to be financially viable and environmentally sustainable. This allows among others to reduce the electricity bill and limit the systematic use of the national power network, typically using non-renewable sources, and thereby support sustainable development. This paper presents an original model for aid-decision in terms of grid configurations and control powers exchanged between interconnected territories. The model is based on Petri nets. Therefore, an iterative algorithm for power flow management is based on instantaneous gap between the production capability (photovoltaic, wind) and the demand of each user. So, in order to validate our model, we selected three French regions: the PACA region, the Champagne-Ardenne region and the Lorraine region. Due to their policy, their geographical and climatic features, we opted for two renewable sources: “wind” and “photovoltaic”. The numerical simulations are performed using the instantaneous productions of each region and their energy demand for a typical summer day. A detailed economic analysis is performed for two scenarios (with or without interconnections). The results show that the use of renewable energy in an interconnection context (i.e. pooling), offers serious economic and technical advantages.展开更多
多区域综合能源系统(integrated energy system,IES)的能量供需关系复杂,增加了系统规划及运行调度的难度。为此,提出了计及区域能量互济的多目标双层优化策略。其中,规划层选取年化总成本、㶲效率及年碳排放量作为优化子目标,并对子目...多区域综合能源系统(integrated energy system,IES)的能量供需关系复杂,增加了系统规划及运行调度的难度。为此,提出了计及区域能量互济的多目标双层优化策略。其中,规划层选取年化总成本、㶲效率及年碳排放量作为优化子目标,并对子目标赋予权重因子,建立多目标优化模型;调度层以日运行成本最低为目标函数,并计及区域能量互济的作用。分别采用线性权重递减的粒子群优化算法和整数线性规划方法求解规划及调度问题,实现了二者的协同优化。算例分析表明:双层优化策略将IES的运行特性纳入规划过程,提高了规划方案的可行性;应合理配置多目标优化的权重因子,以实现多目标的合理折中;区域能量互济能够优化IES的运行方式,提高综合效益。展开更多
With development of integrated energy systems and energy markets,transactive energy has received increasing attention from society and academia,and realization of energy distribution and integrated demand response thr...With development of integrated energy systems and energy markets,transactive energy has received increasing attention from society and academia,and realization of energy distribution and integrated demand response through market transactions has become a current research hotspot.Research on optimized operation of a distributed energy station as a regional energy supply center is of great significance for improving flexibility and reliability of the system.Based on retail-side energy trading market,this study first establishes a framework of combined electric and heating energy markets and analyses a double auction market mechanism model of interconnected distributed energy stations.This study establishes a mechanism model of energy market participants,and establishes the electric heating combined market-clearing model to maximize global surplus considering multi-energy storage.Finally,in the case study,a typical user energy consumption scenario in winter is selected,showing market-clearing results and demand response effects on a typical day.Impact of transmission line constraints,energy supply equipment capacity,and other factors on clearing results and global surplus are compared and analyzed,verifying the effects of the proposed method on improving global surplus,enhancing interests of market participants and realizing coordination and optimal allocation of both supply and demand resources through energy complementarity between regions.展开更多
By considering the influence of renewable energy sources(RESs)integration on multi-area interconnected hybrid power systems,this paper proposes an equivalent input disturbance(EID)-based load frequency control(LFC)str...By considering the influence of renewable energy sources(RESs)integration on multi-area interconnected hybrid power systems,this paper proposes an equivalent input disturbance(EID)-based load frequency control(LFC)strategy,which can effectively overcome the factors of random disturbance,model uncertainties and communication delay.First,an equivalent mathematical LFC model of an interconnected system is constructed.Then,the proposed robust controllers,based on the idea of EID,are designed to suppress the randomness and volatility of the renewable energy grid connection and coordinate the frequency fluctuation of the interconnected power system.Finally,the validity and superiority of the established topology structure and the superiority of the proposed strategy are demonstrated by dynamic time domain response experiments under the condition of high penetration of renewable energy.展开更多
基金supported by the Science and Technology Support Program of Guizhou Province([2022]General 012)the Key Science and Technology Project of China Southern Power Grid Corporation(GZKJXM20220043)。
文摘The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and voltage violations.To address these problems,we propose a coordinated planning method for flexible interconnections and energy storage systems(ESSs)to improve the accommodation capacity of DPVs.First,the power-transfer characteristics of flexible interconnection and ESSs are analyzed.The equipment costs of the voltage source converters(VSCs)and ESSs are also analyzed comprehensively,considering the differences in installation and maintenance costs for different installation locations.Second,a bilevel programming model is established to minimize the annual comprehensive cost and yearly total PV curtailment capacity.Within this framework,the upper-level model optimizes the installation locations and capacities of the VSCs and ESSs,whereas the lower-level model optimizes the operating power of the VSCs and ESSs.The proposed model is solved using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-II).The effectiveness of the proposed planning method is validated through an actual LVDN scenario,which demonstrates its advantages in enhancing PV accommodation capacity.In addition,the economic benefits of various planning schemes with different flexible interconnection topologies and different PV grid-connected forms are quantitatively analyzed,demonstrating the adaptability of the proposed coordinated planning method.
基金The authors acknowledge support from the German Research Foundation(DFG:LE 2249/5-1)the Sino-German Center for Research Promotion(GZ1579)+1 种基金Yunnan Fundamental Research Projects(202201AW070014)Jiajia Qiu and Yu Duan appreciate support from the China Scholarship Council(No.201908530218&202206990027).
文摘Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy stor-age devices at all technology readiness levels.Due to various challenging issues,especially limited stability,nano-and micro-structured(NMS)electrodes undergo fast electrochemical performance degradation.The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement,even though it only occupies comple-mentary and facilitating components for the main mechanism.However,extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies.This review will aim at highlighting these NMS scaffold design strategies,summariz-ing their corresponding strengths and challenges,and thereby outlining the potential solutions to resolve these challenges,design principles,and key perspectives for future research in this field.Therefore,this review will be one of the earliest reviews from this viewpoint.
文摘The transition to sustainable energy systems is one of the defining challenges of our time, necessitating innovations in how we generate, distribute, and manage electrical power. Micro-grids, as localized energy hubs, have emerged as a promising solution to integrate renewable energy sources, ensure energy security, and improve system resilience. The Autonomous multi-factor Energy Flow Controller (AmEFC) introduced in this paper addresses this need by offering a scalable, adaptable, and resilient framework for energy management within an on-grid micro-grid context. The urgency for such a system is predicated on the increasing volatility and unpredictability in energy landscapes, including fluctuating renewable outputs and changing load demands. To tackle these challenges, the AmEFC prototype incorporates a novel hierarchical control structure that leverages Renewable Energy Sources (RES), such as photovoltaic systems, wind turbines, and hydro pumps, alongside a sophisticated Battery Management System (BMS). Its prime objective is to maintain an uninterrupted power supply to critical loads, efficiently balance energy surplus through hydraulic storage, and ensure robust interaction with the main grid. A comprehensive Simulink model is developed to validate the functionality of the AmEFC, simulating real-world conditions and dynamic interactions among the components. The model assesses the system’s reliability in consistently powering critical loads and its efficacy in managing surplus energy. The inclusion of advanced predictive algorithms enables the AmEFC to anticipate energy production and consumption trends, integrating weather forecasting and inter-controller communication to optimize energy flow within and across micro-grids. This study’s significance lies in its potential to facilitate the seamless incorporation of RES into existing power systems, thus propelling the energy sector towards a more sustainable, autonomous, and resilient future. The results underscore the potential of such a system to revolutionize energy management practices and highlight the importance of smart controller systems in the era of smart grids.
文摘This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(ASEAN)Power Grid.This study focuses on modeling and evaluating the dynamic performance of the interconnected system,considering the high penetration of renewable sources.Power flow,small signal stability,and transient stability analyses were conducted to assess the ability of the proposed linked power system models to withstand small and large disturbances,utilizing the Power Systems Analysis Toolbox(PSAT)software in MATLAB.All components used in the model are documented in the PSAT library.Currently,there is a lack of publicly available studies regarding the implementation of this specific system.Additionally,the study investigates the behavior of a system with a high penetration of renewable energy sources.Based on the findings,this study concludes that a system is generally stable when interconnection is realized,given its appropriate location and dynamic component parameters.Furthermore,the critical eigenvalues of the system also exhibited improvement as the renewable energy sources were augmented.
基金supported by National Key R&D Program of China (No. 2018YFB0905000)Science and Technology Project of SGCC (SGTJDK00DWJS1800232)+1 种基金National Natural Science Foundation of China (51977141)State Grid Corporation of China project: “Research on Construction Technology of Integrated Energy System for Urban Multifunctional Groups” (SGTJJY00GHJS1900040)
文摘In recent years,primary energy consumption in China’s urban areas has increased rapidly,facing the problems of extensive use of energy,high energy consumption and insufficient intensified use of energy resources.Improving multienergy supply,increasing the proportion of clean energy and integrated energy efficiency are the main goals of urban development.The integrated energy system with multi-functional synergy and open trading will become one of the new directions for the development of new urban energy systems.This paper summarizes the main problems faced by the current towns and the characteristics of the new urban energy system,analyzes the development of new urban energy system from three aspects including energy interconnection hub infrastructure construction,energy management platform construction and energy value sharing,and forecasts the future development direction of new urban energy systems.
基金supported by National Key R&D Program of China(2017YFB0903504)
文摘In the context of constructing Global Energy Interconnection(GEI), energy storage technology, as one of the important basic supporting technologies in power system, will play an important role in the energy configuration and optimization. Based on the most promising battery energy storage technology, this paper introduces the current status of the grid technology, the application of large-scale energy storage technology and the supporting role of battery energy storage for GEI. Based on several key technologies of large-scale battery energy storage system, preliminary analysis of the standard system construction of energy storage system is made, and the future prospect is put forward.
基金funded by the State Grid Science and Technology Research Program:“Research on coordination development mode and reliability evaluation of source,network,load and storage considering the safety requirements(No.B3440818K005)”
文摘The European power grid is one of the largest regional interconnected power grids in the world.It realizes a multinational grid operation,which is rare.The total installed capacity of the European power grid is the largest throughout the world.In addition,the integration and utilization of renewable energy in this grid is a great benchmark for other countries and can help promote energy transformation and achieve a high proportion of renewable energy consumption.Based on the analysis of the existing status of the European interconnected power grid and the development history of this power grid,this paper summarizes four key development stages of the European power grid.In addition,the characteristics of each stage and the development prospect of the European power grid are analyzed.On this basis,this paper gives suggestions for the development and construction of China’s energy internet;this can provide valuable reference for further studies on China’s energy internet.
基金supported by the GEIGC Science and Technology Project in the framework of“Research on Comprehensive Path Evaluation Methods and Practical Models for the Synergetic Development of Global Energy,Atmospheric Environment and Human Health”(grant No.20210302007).
文摘Climate change and air pollution are primarily caused by the combustion and utilization of fossil fuels.Both climate change and air pollution cause health problems.Based on the development of China,it is extremely important to explore the synergies of the energy transition,CO_(2) reduction,air pollution control,and health improvement under the target of carbon peaking before 2030 and carbon neutrality before 2060.This study introduces the policy evolution and research progress related to energy,climate change,and the environment in China and proposes a complete energy-climate-air-health mechanism framework.Based on the MESSAGE-GLOBIOM integrated assessment model,emission inventory and chemical transport model,and exposure-response function,a comprehensive assessment method of energy-climate-air-health synergies was established and applied to quantify the impacts of Chinese Energy Interconnection Carbon Neutrality(CEICN)scenario.The results demonstrate that,by 2060,the SO_(2),NO_(x) and PM_(2.5) emissions are estimated to be reduced by 91%,85%,and 90%respectively compared to the business-as-usual(BAU)scenario.The direct health impacts brought by achieving the goal of carbon neutrality will drive the proactive implementation of more emission reduction measures and bring greater benefits to human health.
基金Supported by Science and Technology Projects of State Grid Corporation of China(JF2021018).
文摘With the wide application of renewable energy power generation technology,the distribution network presents the characteristics of multi-source and complex structure.There are potential risks in the stability of power system,and the problem of power quality is becoming more and more serious.This paper studies and proposes a power optimization cooperative control strategy for flexible fast interconnection device with energy storage,which combines the flexible interconnection technology with the energy storage device.The primary technology is to regulate the active and reactive power of the converter.By comparing the actual power value of the converter with the reference value,the proportional integral(PI)controller is used for correction,and the current components of d and q axes are obtained and input to the converter as the reference value of the current inner loop.The control strategy in this paper can realize power mutual aid between feeders,and at the same time,the energy storage device can provide or absorb a certain amount of power for feeders,so that the power grid can realize stable operation in a certain range.
基金supported by the State Grid Science and Technology Project (Research on Transnational Energy Interaction Simulation and Deduction Technologies of the Global Energy Interconnection, JS71-17-004)
文摘When transnationalized electricity trade is conducted in the context of Global Energy Interconnection(GEI),the transaction settlement usually has a long cycle and high cost and is influenced by the volatility of the exchange rate.It is thus necessary to overcome the problems associated with the transaction settlement,change in the trading model data,and trading strategy in the transnational transaction deduction.To overcome the problem of trade settlement,this paper proposes the use of a digital currency(energy currency)for the cross-border electricity trading settlement based on the special drawing rights of the International Monetary Fund,which is controlled by the Global Energy Interconnection Development and Cooperation Organization(GEIDCO),to enable the proposed currency to become a stable digital currency.The traders can use the energy coins as a unit of currency for quotes,combined with the data pertaining to the changes in the energy information obtained from the GEI framework and data regarding the optimally extrapolated reference trading indicators.To realize the implementation of the multi-trader concurrent transaction deduction using a microservice architecture,this paper proposes a method of computing the microservice and synchronous interaction among the traders,based on the database table data,because the large amount of computation is required to be accomplished asynchronously with a single process.The key technology behind these cross-national electricity trading simulations can not only enable the GEI transnational traders to performed daily real-time trading,but it also demonstrates the advantages of the rapid settlement of the energy currency and the realization of a stable payment in the global energy interconnection cross-border electricity trading.
文摘The problematic of energy management, particularly in terms of resources control and efficiency, has become in the space of a few years an eminently strategic subject. Its implementation is both complex and exciting as the prospects are promising, especially in relation with smart grids technologies. The deregulation of the electricity market, the high cost of storage, and the new laws on energy transition incite some significant users (collectivities, cities, regions, etc.) to form themselves into local producers in order to gain autonomy and reduce their energy bills. Thus, they may have their own sources (classic and/or renewable energy sources) to satisfy their needs and sell their excess production instead of storing it. In this idea, the territorial interconnection principle offers several advantages (energy efficiency, environmental protection, better economic balance). The main challenge of such systems is to ensure good energy management. Therefore, power distribution strategy must be implemented by matching the supply and the demand. Such systems have to be financially viable and environmentally sustainable. This allows among others to reduce the electricity bill and limit the systematic use of the national power network, typically using non-renewable sources, and thereby support sustainable development. This paper presents an original model for aid-decision in terms of grid configurations and control powers exchanged between interconnected territories. The model is based on Petri nets. Therefore, an iterative algorithm for power flow management is based on instantaneous gap between the production capability (photovoltaic, wind) and the demand of each user. So, in order to validate our model, we selected three French regions: the PACA region, the Champagne-Ardenne region and the Lorraine region. Due to their policy, their geographical and climatic features, we opted for two renewable sources: “wind” and “photovoltaic”. The numerical simulations are performed using the instantaneous productions of each region and their energy demand for a typical summer day. A detailed economic analysis is performed for two scenarios (with or without interconnections). The results show that the use of renewable energy in an interconnection context (i.e. pooling), offers serious economic and technical advantages.
文摘多区域综合能源系统(integrated energy system,IES)的能量供需关系复杂,增加了系统规划及运行调度的难度。为此,提出了计及区域能量互济的多目标双层优化策略。其中,规划层选取年化总成本、㶲效率及年碳排放量作为优化子目标,并对子目标赋予权重因子,建立多目标优化模型;调度层以日运行成本最低为目标函数,并计及区域能量互济的作用。分别采用线性权重递减的粒子群优化算法和整数线性规划方法求解规划及调度问题,实现了二者的协同优化。算例分析表明:双层优化策略将IES的运行特性纳入规划过程,提高了规划方案的可行性;应合理配置多目标优化的权重因子,以实现多目标的合理折中;区域能量互济能够优化IES的运行方式,提高综合效益。
基金supported by National Key R&D Program of China(2018YFB0905000)Science and Technology Project of SGCC(SGTJDK00DWJS1800232)+2 种基金National Natural Science Foundation of China(51977141)Joint Research Fund of the National Science Fund of China(U1766210)conducted in cooperation of APPLIED ENERGY UNiLAB-DEM。
文摘With development of integrated energy systems and energy markets,transactive energy has received increasing attention from society and academia,and realization of energy distribution and integrated demand response through market transactions has become a current research hotspot.Research on optimized operation of a distributed energy station as a regional energy supply center is of great significance for improving flexibility and reliability of the system.Based on retail-side energy trading market,this study first establishes a framework of combined electric and heating energy markets and analyses a double auction market mechanism model of interconnected distributed energy stations.This study establishes a mechanism model of energy market participants,and establishes the electric heating combined market-clearing model to maximize global surplus considering multi-energy storage.Finally,in the case study,a typical user energy consumption scenario in winter is selected,showing market-clearing results and demand response effects on a typical day.Impact of transmission line constraints,energy supply equipment capacity,and other factors on clearing results and global surplus are compared and analyzed,verifying the effects of the proposed method on improving global surplus,enhancing interests of market participants and realizing coordination and optimal allocation of both supply and demand resources through energy complementarity between regions.
基金supported in part by the NSFC of China under Grant 62373373in part by the Natural Science Foundation of Hunan Province of China under Grant 2024JJ3033in part by the Science and Technology Innovation Program of Hunan Province under Grant 2022RC3051.
文摘By considering the influence of renewable energy sources(RESs)integration on multi-area interconnected hybrid power systems,this paper proposes an equivalent input disturbance(EID)-based load frequency control(LFC)strategy,which can effectively overcome the factors of random disturbance,model uncertainties and communication delay.First,an equivalent mathematical LFC model of an interconnected system is constructed.Then,the proposed robust controllers,based on the idea of EID,are designed to suppress the randomness and volatility of the renewable energy grid connection and coordinate the frequency fluctuation of the interconnected power system.Finally,the validity and superiority of the established topology structure and the superiority of the proposed strategy are demonstrated by dynamic time domain response experiments under the condition of high penetration of renewable energy.