Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of...Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method.展开更多
The effects of adjacent metal layers and space between metal lines on the temperature rise of multilevel ULSI interconnect lines are investigated by modeling a three-layer interconnect. The heat dissipation of various...The effects of adjacent metal layers and space between metal lines on the temperature rise of multilevel ULSI interconnect lines are investigated by modeling a three-layer interconnect. The heat dissipation of various metallization technologies concerning the metal and low-k dielectric employment is simulated in detail. The Joule heat generated in the interconnect is transferred mainly through the metal lines in each metal layer and through the path with the smallest thermal resistance in each Ield layer. The temperature rises of Al metallization are approximately pAl/pCu times higher than those of Cu metallization under the same conditions. In addition, a thermal problem in 0.13μm globe interconnects is studied for the worst case, in which there are no metal lines in the lower interconnect layers. Several types of dummy metal heat sinks are investigated and compared with regard to thermal efficiency,influence on parasitic capacitance,and optimal application by combined thermal and electrical simula- tion.展开更多
The interconnection network is one of the key elements of distributed computing systems such as MPP (massively parallel processing) or NOWs (network of workstations).In this paper,a high speed optical interconnection ...The interconnection network is one of the key elements of distributed computing systems such as MPP (massively parallel processing) or NOWs (network of workstations).In this paper,a high speed optical interconnection data link which has been designed and implemented is presented.Using TDM (time division multiplexing),virtual parallel synchronous data transmission between the PCI buses of two computers has been achieved.The maximum data rate of the link is 1 250 Mbit/s,and the communication distance of link is more than 600 m using multi mode fibers.The design method of the high frequency electrical signals on the network interface card has been analyzed,and the efficient data transmission bandwidth of the link in different transmission modes has been tested and analyzed.展开更多
This paper introduces the current situation of China power industry and interconnection, the necessity to develop interconnection, the principle of nationwide interconnection and the key technologies to be studiedincl...This paper introduces the current situation of China power industry and interconnection, the necessity to develop interconnection, the principle of nationwide interconnection and the key technologies to be studiedinclude HVDC and FACTS. The paper also discusses thefeasibility of 750 kV to be used in the northwest.regionand to speed up research and development of nighervoltage level in other regions of China, as well as scl-ence and technical innovation for transmission and dis-tribution projects.展开更多
The future energy policy,long-term energy supply plan,and necessity of power system interconnection are discussed considering the climate change agreement and national carbon neutrality policy.Although several studies...The future energy policy,long-term energy supply plan,and necessity of power system interconnection are discussed considering the climate change agreement and national carbon neutrality policy.Although several studies have been conducted on power system interconnection related projects,a few reviews have been performed related to the Greenhouse Gas Convention in North-East Asian(NEA)regions.Therefore,the future directions and possible scenarios on power system interconnection are studied by combining the issues by comprehensively considering carbon neutrality policy according to the perspective of Korea.展开更多
With the increasing demand worldwide for power grid interconnection,a growing number of related projects are under planning or construction.Despite the rapid growth of cross-border interconnection projects,the systema...With the increasing demand worldwide for power grid interconnection,a growing number of related projects are under planning or construction.Despite the rapid growth of cross-border interconnection projects,the systematic research on profit models for these projects is insufficient.This paper first analyzes the profit sources of interconnection projects.Based on the analysis results,profit models are considered under different regulatory systems for three types of crossborder interconnection projects:fully market-oriented,semi-marketization,and fully supervised.Finally,measures for increasing the profitability and sustainable development of power interconnection projects are proposed.展开更多
With sustaining change of production mode,layout planning is no longer a thing built once for all.Cellular layout(CL) is becoming a hotspot in the research field of manufacturing system layout.Traditional researches o...With sustaining change of production mode,layout planning is no longer a thing built once for all.Cellular layout(CL) is becoming a hotspot in the research field of manufacturing system layout.Traditional researches on layout planning are mainly concentrating on aspects of layout arithmetic,style and evaluation,etc.Relatively seldom efforts are paid to CL and its specific problems as cell formation(CF),equipment sharing and CL analysis.Through problem analyzing of layout in cellular manufacturing system(CMS),research approach of cell formation,interactive layout and layout analysis threaded with process interconnection relationship(PIR) is proposed.Typical key technologies in CL like CF technology based on similarity analysis of part processes,interactive visual layout technology,layout evaluation technology founded on PIR analysis and algorithm of cell equipment sharing are put forward.Against the background of one enterprise which encounters problems of low utility of key equipments and disperse material logistic,an example of four-cell layout is given.The CL adjustment and analysis results show that equipment with high level of sharing degree should be disposed around the boundary of its main cell,and be near to other sharing cells as possible; process route should be centralized by all means,so equipment adjustment is to be implemented along direction that route intersection can be decreased; giving consideration to the existence of discrete cell,logistic route and its density should be centralized to cells formed.The proposed research can help improve equipment utility and material logistic efficiency of CL,and can be popularized to other application availably.展开更多
In this paper, a consensus algorithm of multi-agent second-order dynamical systems with nonsymmetric interconnection and heterogeneous delays is studied. With the hypothesis of directed weighted topology graph with a ...In this paper, a consensus algorithm of multi-agent second-order dynamical systems with nonsymmetric interconnection and heterogeneous delays is studied. With the hypothesis of directed weighted topology graph with a globally reachable node, decentralized consensus condition is obtained by applying generalized Nyquist criterion. For the systems with both communication and input delays, it is shown that the consensus condition is dependent on input delays but independent of communication delays.展开更多
The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and v...The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and voltage violations.To address these problems,we propose a coordinated planning method for flexible interconnections and energy storage systems(ESSs)to improve the accommodation capacity of DPVs.First,the power-transfer characteristics of flexible interconnection and ESSs are analyzed.The equipment costs of the voltage source converters(VSCs)and ESSs are also analyzed comprehensively,considering the differences in installation and maintenance costs for different installation locations.Second,a bilevel programming model is established to minimize the annual comprehensive cost and yearly total PV curtailment capacity.Within this framework,the upper-level model optimizes the installation locations and capacities of the VSCs and ESSs,whereas the lower-level model optimizes the operating power of the VSCs and ESSs.The proposed model is solved using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-II).The effectiveness of the proposed planning method is validated through an actual LVDN scenario,which demonstrates its advantages in enhancing PV accommodation capacity.In addition,the economic benefits of various planning schemes with different flexible interconnection topologies and different PV grid-connected forms are quantitatively analyzed,demonstrating the adaptability of the proposed coordinated planning method.展开更多
Environmental problems caused by traditional power production and the unbalanced distribution of energy resources and demand limit the development of sustainable societies. A feasible method to optimize the resource a...Environmental problems caused by traditional power production and the unbalanced distribution of energy resources and demand limit the development of sustainable societies. A feasible method to optimize the resource allocation has been proposed, and it involves cross-border and cross-regional electricity transactions. However, the uncertainty of renewable energy and the specific features of the cross-border electricity market are key issues which need to be considered in the trading mechanism design. Based on this, this paper sets up a long-term cross-border electricity trading model considering the uncertainty of renewable energy. First, annual transactions are matched according to the declared data of bidders with consideration of cross-border interconnection development benefits, potential benefit risks, and transmission costs. Second, for annual contract decomposition, the model uses the minimum generation cost function with a penalty item for power shortages to allocate electricity to each month. Additionally, the scenario reduction algorithm is combined with the unit commitment to construct a stochastic generation plan. Finally, a case study of the numerical results for the multinational electricity market in northeast Asia is used to show that the proposed trading model is feasible for cross-border electricity trading with high penetration of renewable energy.展开更多
Climate change and air pollution are primarily caused by the combustion and utilization of fossil fuels.Both climate change and air pollution cause health problems.Based on the development of China,it is extremely imp...Climate change and air pollution are primarily caused by the combustion and utilization of fossil fuels.Both climate change and air pollution cause health problems.Based on the development of China,it is extremely important to explore the synergies of the energy transition,CO_(2) reduction,air pollution control,and health improvement under the target of carbon peaking before 2030 and carbon neutrality before 2060.This study introduces the policy evolution and research progress related to energy,climate change,and the environment in China and proposes a complete energy-climate-air-health mechanism framework.Based on the MESSAGE-GLOBIOM integrated assessment model,emission inventory and chemical transport model,and exposure-response function,a comprehensive assessment method of energy-climate-air-health synergies was established and applied to quantify the impacts of Chinese Energy Interconnection Carbon Neutrality(CEICN)scenario.The results demonstrate that,by 2060,the SO_(2),NO_(x) and PM_(2.5) emissions are estimated to be reduced by 91%,85%,and 90%respectively compared to the business-as-usual(BAU)scenario.The direct health impacts brought by achieving the goal of carbon neutrality will drive the proactive implementation of more emission reduction measures and bring greater benefits to human health.展开更多
In order to indicate the performances of a large-scale communication network with domain partition and interconnection today, a kind of reliability index weighed by normalized capacity is defined. Based on the route r...In order to indicate the performances of a large-scale communication network with domain partition and interconnection today, a kind of reliability index weighed by normalized capacity is defined. Based on the route rules of network with domain partition and interconnection, the interconnection indexes among the nodes within the domain and among the domains are given from several aspects. It is expatiated on that the index can thoroughly represent the effect on the reliability index of the objective factor and the subjective measures of the designer, which obeys the route rules of a network with domain partition and interconnection. It is discussed that the defined index is rational and compatible with the traditional index.展开更多
Interconnections in microelectronic packaging are not only the physical carrier to realize the function of electronic circuits,but also the weak spots in reliability tests.Most of failures in power devices are caused ...Interconnections in microelectronic packaging are not only the physical carrier to realize the function of electronic circuits,but also the weak spots in reliability tests.Most of failures in power devices are caused by the malfunction of interconnections,including failure of bonding wire as well as cracks of solder layer.In fact,the interconnection failure of power devices is the result of a combination of factors such as electricity,temperature,and force.It is significant to investigate the failure mechanisms of various factors for the failure analysis of interconnections in power devices.This paper reviews the main failure modes of bonding wire and solder layer in the interconnection structure of power devices,and its failure mechanism.Then the reliability test method and failure analysis techniques of interconnection in power device are introduced.These methods are of great significance to the reliability analysis and life prediction of power devices.展开更多
This paper discusses the ben efits of developing cross border in tercon nection. It was writte n to promote the ben efits of interc on nectio n to facilitate ren ewable en ergy developme nt and trading. It illustrates...This paper discusses the ben efits of developing cross border in tercon nection. It was writte n to promote the ben efits of interc on nectio n to facilitate ren ewable en ergy developme nt and trading. It illustrates the assessme nt of the ben efit with coupling between two power systems with an example importing renewable energy. The strategy for the development of European wide in tercon necti on to level prices is described together with the trading arrangeme nts. The process to evaluate the pote ntial for new intercon nectio n investment is outli ned together with a discussi on of the tech no logy options. The paper concludes with an illustration of the arrangements for cross border trading.展开更多
Climate change is becoming an important issue in all fields of infrastructure development.Electricity plays a core role in the decarbonized energy system’s path to a regional zero-emission pattern.A well-built trans-...Climate change is becoming an important issue in all fields of infrastructure development.Electricity plays a core role in the decarbonized energy system’s path to a regional zero-emission pattern.A well-built trans-Mediterranean backbone grid can hedge the profound evolution of regional power generation,transmission,and consumption.To date,only Turkey and the Maghreb countries(i.e.,Morocco,Algeria,and Tunisia)are connected with the Continental European Synchronous Area.Other south-and east-shore countries have insufficient interconnection infrastructures and synchronization difficulties that have proven to be major hurdles to the implementation of large-scale solar and wind projects and achievement of climate goals.This study analyzes the current trans-boundary grid interconnections and power and carbon emission portfolios in the Mediterranean region.To align with the recently launched new climate target‘Fit for 55’program and the accelerated large-scale renewables target,a holistic review of projected trans-Mediterranean grids and their market,technical,and financial obstacles of implementation was conducted.For south-and east-shore countries,major legal and regulatory barriers encompassing non-liberalized market structure,regulation gaps of taxation and transmission tariffs,and the private sector’s access rights need to be removed.Enhancement of domestic grids,substations,and harmonized grid codes and frequency,voltage,and communication technology standards among all trans-Mediterranean countries are physical prerequisites for implementing the Trans-Mediterranean Electricity Market.In addition,the mobilization of capital instruments along with private and international investments is indispensable for the realization of supranational transmission projects.As the final section of the decarbonization roadmap,the development of electric appliances,equipment,and vehicles with higher efficiency is inevitable in the decarbonized building,transportation,and industry sectors.展开更多
The economic benefits of interconnecting the power grids of Europe(EU) and China(CN) were assessed considering 100% reliance on renewable energy(RE). Four different scenarios, energy storage without interconnection, i...The economic benefits of interconnecting the power grids of Europe(EU) and China(CN) were assessed considering 100% reliance on renewable energy(RE). Four different scenarios, energy storage without interconnection, installing additional renewable energy sources without interconnection, energy storage with interconnection, and installing additional RE sources with interconnection, were considered for the economic benefit analysis. A comparative study of these four scenarios was conducted to identify the best option for achieving hourly power balance. Further, sensitivity analysis was carried out to demonstrate the robustness of the results. Electricity interconnection between CN and EU decreases the annual additional costs by more than 30% when compared to the absence of interconnection, which demonstrates the necessity and benefits of CN-EU electricity interconnection.展开更多
A multi-layer interconnection structure is a basic component of electronic devices, and printing of the multi-layer interconnection structure is the key process in printed electronics. In this work, electrohydrodynami...A multi-layer interconnection structure is a basic component of electronic devices, and printing of the multi-layer interconnection structure is the key process in printed electronics. In this work, electrohydrodynamic direct-writing (EDW) is utilized to print the conductor-insulator--conductor multi-layer ~nterconne^ction structure. Silver ink is chosen to print the conductor pattern, and a polyvinylpyrrolidone (PVP) solution is util^zed to f^bricate the insulator layer between the bottom and top conductor patterns. The influences of EDW process parameters on the line width of the printed conductor and insulator patterns are studied systematically. The obtained ~es^l~s show that the line width of the printed structure increases with the increase of the flow rate, but decreases with the increase of applied voltage and PVP content in the solution. The average resistivity values of the bottom and top silver conductor tracks are determined to be 1.34 × 10-7 Ω.m and 1.39×10-7 Ω.m, respectively. The printed PVP layer between the two conductor tracks is well insulated, which can meet the insulation requirement of the electronic devices. This study offers an alternative, fast, and cost-effective method of fabricating conductor-insulator-conductor multi-layer interconnections in the electronic industry.展开更多
The global water demand and supply situation is becoming increasingly severe due to water shortage and uneven distribution of water resources.The highest water demand in the energy sector is attributable to power gene...The global water demand and supply situation is becoming increasingly severe due to water shortage and uneven distribution of water resources.The highest water demand in the energy sector is attributable to power generation.With cross-country and cross-continental power grid interconnections becoming a reality,electricity trading across countries and the creation of new opportunities for re-allocation of water resources are possible.This study expands the concept of virtual water and proposes a generalized virtual water flow in an interconnected power grid system to accurately estimate water resource benefits of clean power transmission from both the production and the consumption sides.By defining the water scarcity index as a price mechanism indicator,the benefits of water resources allocation through power grid interconnections are evaluated.Taking the Africa-Asia-Europe interconnection scenario as an example,the total water saving would amount to 88.95 million m^3 by 2030 and 337.8 million m^3 by 2050.This result shows that grid interconnections could promote the development of renewable energy and expand the benefits of available water resources.展开更多
With the global economy integration and progress in energy transformation,it has become a general trend to surpass national boundaries to achieve wider and optimal energy resource allocations.Consequently,there is a c...With the global economy integration and progress in energy transformation,it has become a general trend to surpass national boundaries to achieve wider and optimal energy resource allocations.Consequently,there is a critical n eed to adopt scie ntific approaches in assessi ng cross-border power grid interconnection projects.First,con sidering the promotion of large-scale renewable energy resources and improvements in system adequacy,a comprehensive assessment index system,including costs,socio-economic benefits,environmental benefits,and technical benefits,is established in this study.Second,a synthetic assessment framework is proposed for cross-border power grid interconnection projects based on the index system comprising cost-benefit analysis,with market and network simulations,iterative methods for indicator weight evaluation,and technique for order preferenee by similarity to an ideal solution(TOPSIS)method for the project rankings.Fin ally,by assessi ng and comparing three cross-border projects betwee n Europe and Asia,the proposed index system and assessment framework have been proved to be effective and feasible;the results of this system can thus support investment decision-making related to such projects in the future.展开更多
The development of Global Energy Interconnection(GEI)is essential for supporting a wide range of basic data resources.The Global Energy Interconnection Development and Cooperation Organization has established a compre...The development of Global Energy Interconnection(GEI)is essential for supporting a wide range of basic data resources.The Global Energy Interconnection Development and Cooperation Organization has established a comprehensive data center covering six major systems.However,methods for accurately describing and scientifically evaluating the credibility of the massive amount of GEI data remain underdeveloped.To address this lack of such methods,a GEI data credibility quantitative evaluation model is proposed here.An evaluation indicator system is established to evaluate data credibility from multiple perspectives and ensure the comprehensiveness and impartiality of evaluation results.The Cloud Model abandons the hard division of comments to ensure objectivity and accuracy in evaluation results.To evaluate the suitability of the proposed method,a case analysis is conducted,wherein the proposed method demonstrates sufficient validity and feasibility.展开更多
文摘Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method.
文摘The effects of adjacent metal layers and space between metal lines on the temperature rise of multilevel ULSI interconnect lines are investigated by modeling a three-layer interconnect. The heat dissipation of various metallization technologies concerning the metal and low-k dielectric employment is simulated in detail. The Joule heat generated in the interconnect is transferred mainly through the metal lines in each metal layer and through the path with the smallest thermal resistance in each Ield layer. The temperature rises of Al metallization are approximately pAl/pCu times higher than those of Cu metallization under the same conditions. In addition, a thermal problem in 0.13μm globe interconnects is studied for the worst case, in which there are no metal lines in the lower interconnect layers. Several types of dummy metal heat sinks are investigated and compared with regard to thermal efficiency,influence on parasitic capacitance,and optimal application by combined thermal and electrical simula- tion.
文摘The interconnection network is one of the key elements of distributed computing systems such as MPP (massively parallel processing) or NOWs (network of workstations).In this paper,a high speed optical interconnection data link which has been designed and implemented is presented.Using TDM (time division multiplexing),virtual parallel synchronous data transmission between the PCI buses of two computers has been achieved.The maximum data rate of the link is 1 250 Mbit/s,and the communication distance of link is more than 600 m using multi mode fibers.The design method of the high frequency electrical signals on the network interface card has been analyzed,and the efficient data transmission bandwidth of the link in different transmission modes has been tested and analyzed.
文摘This paper introduces the current situation of China power industry and interconnection, the necessity to develop interconnection, the principle of nationwide interconnection and the key technologies to be studiedinclude HVDC and FACTS. The paper also discusses thefeasibility of 750 kV to be used in the northwest.regionand to speed up research and development of nighervoltage level in other regions of China, as well as scl-ence and technical innovation for transmission and dis-tribution projects.
文摘The future energy policy,long-term energy supply plan,and necessity of power system interconnection are discussed considering the climate change agreement and national carbon neutrality policy.Although several studies have been conducted on power system interconnection related projects,a few reviews have been performed related to the Greenhouse Gas Convention in North-East Asian(NEA)regions.Therefore,the future directions and possible scenarios on power system interconnection are studied by combining the issues by comprehensively considering carbon neutrality policy according to the perspective of Korea.
基金supported by the State Grid Corporation of China’s Science & Technology Project “Risk Identification and Countermeasures of SGCC in the Transition Period of Power Sector Reform.”
文摘With the increasing demand worldwide for power grid interconnection,a growing number of related projects are under planning or construction.Despite the rapid growth of cross-border interconnection projects,the systematic research on profit models for these projects is insufficient.This paper first analyzes the profit sources of interconnection projects.Based on the analysis results,profit models are considered under different regulatory systems for three types of crossborder interconnection projects:fully market-oriented,semi-marketization,and fully supervised.Finally,measures for increasing the profitability and sustainable development of power interconnection projects are proposed.
基金supported by Defence Advanced Research Program of ChinaFoundation Research Program of Beijing Institute of Technology,China (Grant No. 20080342003)
文摘With sustaining change of production mode,layout planning is no longer a thing built once for all.Cellular layout(CL) is becoming a hotspot in the research field of manufacturing system layout.Traditional researches on layout planning are mainly concentrating on aspects of layout arithmetic,style and evaluation,etc.Relatively seldom efforts are paid to CL and its specific problems as cell formation(CF),equipment sharing and CL analysis.Through problem analyzing of layout in cellular manufacturing system(CMS),research approach of cell formation,interactive layout and layout analysis threaded with process interconnection relationship(PIR) is proposed.Typical key technologies in CL like CF technology based on similarity analysis of part processes,interactive visual layout technology,layout evaluation technology founded on PIR analysis and algorithm of cell equipment sharing are put forward.Against the background of one enterprise which encounters problems of low utility of key equipments and disperse material logistic,an example of four-cell layout is given.The CL adjustment and analysis results show that equipment with high level of sharing degree should be disposed around the boundary of its main cell,and be near to other sharing cells as possible; process route should be centralized by all means,so equipment adjustment is to be implemented along direction that route intersection can be decreased; giving consideration to the existence of discrete cell,logistic route and its density should be centralized to cells formed.The proposed research can help improve equipment utility and material logistic efficiency of CL,and can be popularized to other application availably.
基金supported by National Natural Science Foundation of China (No. 60774016, No. 60875039, No. 60904022)the Science Foundation of Education Office of Shandong Province of China (No. J08LJ01)Internal Visiting Scholar Object for Excellence Youth Teacher of the College of Shandong Province of China
文摘In this paper, a consensus algorithm of multi-agent second-order dynamical systems with nonsymmetric interconnection and heterogeneous delays is studied. With the hypothesis of directed weighted topology graph with a globally reachable node, decentralized consensus condition is obtained by applying generalized Nyquist criterion. For the systems with both communication and input delays, it is shown that the consensus condition is dependent on input delays but independent of communication delays.
基金supported by the Science and Technology Support Program of Guizhou Province([2022]General 012)the Key Science and Technology Project of China Southern Power Grid Corporation(GZKJXM20220043)。
文摘The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and voltage violations.To address these problems,we propose a coordinated planning method for flexible interconnections and energy storage systems(ESSs)to improve the accommodation capacity of DPVs.First,the power-transfer characteristics of flexible interconnection and ESSs are analyzed.The equipment costs of the voltage source converters(VSCs)and ESSs are also analyzed comprehensively,considering the differences in installation and maintenance costs for different installation locations.Second,a bilevel programming model is established to minimize the annual comprehensive cost and yearly total PV curtailment capacity.Within this framework,the upper-level model optimizes the installation locations and capacities of the VSCs and ESSs,whereas the lower-level model optimizes the operating power of the VSCs and ESSs.The proposed model is solved using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-II).The effectiveness of the proposed planning method is validated through an actual LVDN scenario,which demonstrates its advantages in enhancing PV accommodation capacity.In addition,the economic benefits of various planning schemes with different flexible interconnection topologies and different PV grid-connected forms are quantitatively analyzed,demonstrating the adaptability of the proposed coordinated planning method.
基金supported in part by National Natural Science Foundation of China(Grant 51607137)in part by China Postdoctoral Science Foundation(2017T100748)in part by the Global Energy Interconnection Group’s Science&Technology Project "The development path for electricity market and key mechanisms for grid interconnection in the context of global clean energy development"(52450018000J)
文摘Environmental problems caused by traditional power production and the unbalanced distribution of energy resources and demand limit the development of sustainable societies. A feasible method to optimize the resource allocation has been proposed, and it involves cross-border and cross-regional electricity transactions. However, the uncertainty of renewable energy and the specific features of the cross-border electricity market are key issues which need to be considered in the trading mechanism design. Based on this, this paper sets up a long-term cross-border electricity trading model considering the uncertainty of renewable energy. First, annual transactions are matched according to the declared data of bidders with consideration of cross-border interconnection development benefits, potential benefit risks, and transmission costs. Second, for annual contract decomposition, the model uses the minimum generation cost function with a penalty item for power shortages to allocate electricity to each month. Additionally, the scenario reduction algorithm is combined with the unit commitment to construct a stochastic generation plan. Finally, a case study of the numerical results for the multinational electricity market in northeast Asia is used to show that the proposed trading model is feasible for cross-border electricity trading with high penetration of renewable energy.
基金supported by the GEIGC Science and Technology Project in the framework of“Research on Comprehensive Path Evaluation Methods and Practical Models for the Synergetic Development of Global Energy,Atmospheric Environment and Human Health”(grant No.20210302007).
文摘Climate change and air pollution are primarily caused by the combustion and utilization of fossil fuels.Both climate change and air pollution cause health problems.Based on the development of China,it is extremely important to explore the synergies of the energy transition,CO_(2) reduction,air pollution control,and health improvement under the target of carbon peaking before 2030 and carbon neutrality before 2060.This study introduces the policy evolution and research progress related to energy,climate change,and the environment in China and proposes a complete energy-climate-air-health mechanism framework.Based on the MESSAGE-GLOBIOM integrated assessment model,emission inventory and chemical transport model,and exposure-response function,a comprehensive assessment method of energy-climate-air-health synergies was established and applied to quantify the impacts of Chinese Energy Interconnection Carbon Neutrality(CEICN)scenario.The results demonstrate that,by 2060,the SO_(2),NO_(x) and PM_(2.5) emissions are estimated to be reduced by 91%,85%,and 90%respectively compared to the business-as-usual(BAU)scenario.The direct health impacts brought by achieving the goal of carbon neutrality will drive the proactive implementation of more emission reduction measures and bring greater benefits to human health.
文摘In order to indicate the performances of a large-scale communication network with domain partition and interconnection today, a kind of reliability index weighed by normalized capacity is defined. Based on the route rules of network with domain partition and interconnection, the interconnection indexes among the nodes within the domain and among the domains are given from several aspects. It is expatiated on that the index can thoroughly represent the effect on the reliability index of the objective factor and the subjective measures of the designer, which obeys the route rules of a network with domain partition and interconnection. It is discussed that the defined index is rational and compatible with the traditional index.
基金supported by the National Natural Science Foundation of China(Grant No.61904127 and 62004144)Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515010651)+2 种基金Fundamental Research Funds for the Central Universities(Grant No.202401002,203134004,20212VA100 and 2021VB006)Hubei Provincial Natural Science Foundation of China(Grant No.2020CFA032)National Key R&D Program of China(Grant No.2019YFB1704600)。
文摘Interconnections in microelectronic packaging are not only the physical carrier to realize the function of electronic circuits,but also the weak spots in reliability tests.Most of failures in power devices are caused by the malfunction of interconnections,including failure of bonding wire as well as cracks of solder layer.In fact,the interconnection failure of power devices is the result of a combination of factors such as electricity,temperature,and force.It is significant to investigate the failure mechanisms of various factors for the failure analysis of interconnections in power devices.This paper reviews the main failure modes of bonding wire and solder layer in the interconnection structure of power devices,and its failure mechanism.Then the reliability test method and failure analysis techniques of interconnection in power device are introduced.These methods are of great significance to the reliability analysis and life prediction of power devices.
文摘This paper discusses the ben efits of developing cross border in tercon nection. It was writte n to promote the ben efits of interc on nectio n to facilitate ren ewable en ergy developme nt and trading. It illustrates the assessme nt of the ben efit with coupling between two power systems with an example importing renewable energy. The strategy for the development of European wide in tercon necti on to level prices is described together with the trading arrangeme nts. The process to evaluate the pote ntial for new intercon nectio n investment is outli ned together with a discussi on of the tech no logy options. The paper concludes with an illustration of the arrangements for cross border trading.
基金supported by the National Science Foundation of China(Grant No.41701232).
文摘Climate change is becoming an important issue in all fields of infrastructure development.Electricity plays a core role in the decarbonized energy system’s path to a regional zero-emission pattern.A well-built trans-Mediterranean backbone grid can hedge the profound evolution of regional power generation,transmission,and consumption.To date,only Turkey and the Maghreb countries(i.e.,Morocco,Algeria,and Tunisia)are connected with the Continental European Synchronous Area.Other south-and east-shore countries have insufficient interconnection infrastructures and synchronization difficulties that have proven to be major hurdles to the implementation of large-scale solar and wind projects and achievement of climate goals.This study analyzes the current trans-boundary grid interconnections and power and carbon emission portfolios in the Mediterranean region.To align with the recently launched new climate target‘Fit for 55’program and the accelerated large-scale renewables target,a holistic review of projected trans-Mediterranean grids and their market,technical,and financial obstacles of implementation was conducted.For south-and east-shore countries,major legal and regulatory barriers encompassing non-liberalized market structure,regulation gaps of taxation and transmission tariffs,and the private sector’s access rights need to be removed.Enhancement of domestic grids,substations,and harmonized grid codes and frequency,voltage,and communication technology standards among all trans-Mediterranean countries are physical prerequisites for implementing the Trans-Mediterranean Electricity Market.In addition,the mobilization of capital instruments along with private and international investments is indispensable for the realization of supranational transmission projects.As the final section of the decarbonization roadmap,the development of electric appliances,equipment,and vehicles with higher efficiency is inevitable in the decarbonized building,transportation,and industry sectors.
基金sponsored partly by EPSRC (Engineering and Physical Sciences Research Council) Grant EP/L017725/1,and Grant EP/N032888/1ATETA (Accelerating Thermal Energy Technology Adoption) projectChina Scholarship Council.of Ministry of Education of China
文摘The economic benefits of interconnecting the power grids of Europe(EU) and China(CN) were assessed considering 100% reliance on renewable energy(RE). Four different scenarios, energy storage without interconnection, installing additional renewable energy sources without interconnection, energy storage with interconnection, and installing additional RE sources with interconnection, were considered for the economic benefit analysis. A comparative study of these four scenarios was conducted to identify the best option for achieving hourly power balance. Further, sensitivity analysis was carried out to demonstrate the robustness of the results. Electricity interconnection between CN and EU decreases the annual additional costs by more than 30% when compared to the absence of interconnection, which demonstrates the necessity and benefits of CN-EU electricity interconnection.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.51035002)the National Natural Science Foundation of China(Grant No.51305373)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120121120035)
文摘A multi-layer interconnection structure is a basic component of electronic devices, and printing of the multi-layer interconnection structure is the key process in printed electronics. In this work, electrohydrodynamic direct-writing (EDW) is utilized to print the conductor-insulator--conductor multi-layer ~nterconne^ction structure. Silver ink is chosen to print the conductor pattern, and a polyvinylpyrrolidone (PVP) solution is util^zed to f^bricate the insulator layer between the bottom and top conductor patterns. The influences of EDW process parameters on the line width of the printed conductor and insulator patterns are studied systematically. The obtained ~es^l~s show that the line width of the printed structure increases with the increase of the flow rate, but decreases with the increase of applied voltage and PVP content in the solution. The average resistivity values of the bottom and top silver conductor tracks are determined to be 1.34 × 10-7 Ω.m and 1.39×10-7 Ω.m, respectively. The printed PVP layer between the two conductor tracks is well insulated, which can meet the insulation requirement of the electronic devices. This study offers an alternative, fast, and cost-effective method of fabricating conductor-insulator-conductor multi-layer interconnections in the electronic industry.
基金supported by the State Grid GEIGC Science and Technology Project under the “Research on Global Energy Transition Scenario and Model Development and Application under the New Pattern of Global Environmental Protection” framework(Grant No.52450018000W)
文摘The global water demand and supply situation is becoming increasingly severe due to water shortage and uneven distribution of water resources.The highest water demand in the energy sector is attributable to power generation.With cross-country and cross-continental power grid interconnections becoming a reality,electricity trading across countries and the creation of new opportunities for re-allocation of water resources are possible.This study expands the concept of virtual water and proposes a generalized virtual water flow in an interconnected power grid system to accurately estimate water resource benefits of clean power transmission from both the production and the consumption sides.By defining the water scarcity index as a price mechanism indicator,the benefits of water resources allocation through power grid interconnections are evaluated.Taking the Africa-Asia-Europe interconnection scenario as an example,the total water saving would amount to 88.95 million m^3 by 2030 and 337.8 million m^3 by 2050.This result shows that grid interconnections could promote the development of renewable energy and expand the benefits of available water resources.
基金the Science and Technology Project of Global Energy Interconnection Group Co.,Ltd.(No.524500180014).
文摘With the global economy integration and progress in energy transformation,it has become a general trend to surpass national boundaries to achieve wider and optimal energy resource allocations.Consequently,there is a critical n eed to adopt scie ntific approaches in assessi ng cross-border power grid interconnection projects.First,con sidering the promotion of large-scale renewable energy resources and improvements in system adequacy,a comprehensive assessment index system,including costs,socio-economic benefits,environmental benefits,and technical benefits,is established in this study.Second,a synthetic assessment framework is proposed for cross-border power grid interconnection projects based on the index system comprising cost-benefit analysis,with market and network simulations,iterative methods for indicator weight evaluation,and technique for order preferenee by similarity to an ideal solution(TOPSIS)method for the project rankings.Fin ally,by assessi ng and comparing three cross-border projects betwee n Europe and Asia,the proposed index system and assessment framework have been proved to be effective and feasible;the results of this system can thus support investment decision-making related to such projects in the future.
基金supported by the State Grid Science and Technology Project (No. 52450018000H)
文摘The development of Global Energy Interconnection(GEI)is essential for supporting a wide range of basic data resources.The Global Energy Interconnection Development and Cooperation Organization has established a comprehensive data center covering six major systems.However,methods for accurately describing and scientifically evaluating the credibility of the massive amount of GEI data remain underdeveloped.To address this lack of such methods,a GEI data credibility quantitative evaluation model is proposed here.An evaluation indicator system is established to evaluate data credibility from multiple perspectives and ensure the comprehensiveness and impartiality of evaluation results.The Cloud Model abandons the hard division of comments to ensure objectivity and accuracy in evaluation results.To evaluate the suitability of the proposed method,a case analysis is conducted,wherein the proposed method demonstrates sufficient validity and feasibility.