Interconnectivity is the key characteristic of bone tissue engineering scaffold modulating cell migration,blood vessels invasion and transport of nutrient and waste.However,efforts and understanding of the interconnec...Interconnectivity is the key characteristic of bone tissue engineering scaffold modulating cell migration,blood vessels invasion and transport of nutrient and waste.However,efforts and understanding of the interconnectivity of porous Mg is limited due to the diverse architectures of pore struts and pore size distribution of Mg scaffold systems.In this work,biomimetic hierarchical porous Mg scaffolds with tailored interconnectivity as well as pore size distribution were prepared by template replication of infiltration casting.Mg scaffold with better interconnectivity showed lower mechanical strength.Enlarging interconnected pores would enhance the interconnectivity of the whole scaffold and reduce the change of ion concentration,pH value and osmolality of the degradation microenvironment due to the lower specific surface area.Nevertheless,the degradation rates of five tested Mg scaffolds were no different because of the same geometry of strut unit.Direct cell culture and evaluation of cell density at both sides of four typical Mg scaffolds indicated that cell migration through hierarchical porous Mg scaffolds could be enhanced by not only bigger interconnected pore size but also larger main pore size.In summary,design of interconnectivity in terms of pore size distribution could regulate mechanical strength,microenvironment in cell culture condition and cell migration potential,and beyond that it shows great potential for personalized therapy which could facilitate the regeneration process.展开更多
Open data strategies are being adopted in disaster-related data particularly because of the need to provide information on global targets and indicators for implementation of the Sendai Framework for Disaster Risk Red...Open data strategies are being adopted in disaster-related data particularly because of the need to provide information on global targets and indicators for implementation of the Sendai Framework for Disaster Risk Reduction 2015–2030.In all phases of disaster risk management including forecasting,emergency response and post-disaster reconstruction,the need for interconnected multidisciplinary open data for collaborative reporting as well as study and analysis are apparent,in order to determine disaster impact data in timely and reportable manner.The extraordinary progress in computing and information technology in the past decade,such as broad local and wide-area network connectivity(e.g.Internet),highperformance computing,service and cloud computing,big data methods and mobile devices,provides the technical foundation for connecting open data to support disaster risk research.A new generation of disaster data infrastructure based on interconnected open data is evolving rapidly.There are two levels in the conceptual model of Linked Open Data for Global Disaster Risk Research(LODGD)Working Group of the Committee on Data for Science and Technology(CODATA),which is the Committee on Data of the International Council for Science(ICSU):data characterization and data connection.In data characterization,the knowledge about disaster taxonomy and data dependency on disaster events requires specific scientific study as it aims to understand and present the correlation between specific disaster events and scientific data through the integration of literature analysis and semantic knowledge discovery.Data connection concepts deal with technical methods to connect distributed data resources identified by data characterization of disaster type.In the science community,interconnected open data for disaster risk impact assessment are beginning to influence how disaster data are shared,and this will need to extend data coverage and provide better ways of utilizing data across domains where innovation and integration are now necessarily needed.展开更多
Porous hydroxyapatite (HA)-tricalcium phosphate (TCP) ceramic scaffolds were prepared using a screw-type extrusion method with polymer beads. HA and dicalcium phosphate dehydrates (DCPD) were added at various ra...Porous hydroxyapatite (HA)-tricalcium phosphate (TCP) ceramic scaffolds were prepared using a screw-type extrusion method with polymer beads. HA and dicalcium phosphate dehydrates (DCPD) were added at various ratios to obtain different HA/TCP ratios in sintered ceramic scaffolds. To further enhance the pore interconnectivity and porosity, the developed porous ceramic scaffolds were etched with acid solutions. The maximum porosity (- 85%) was observed in the Ca-P scaffold with the lowest HA (-7%) content. On the other hand, the maximum compressive strength was noted in the scaffolds with the highest HA content ( - 85%). X-ray diffraction showed that the extent of the fl-TCP to a-TCP phase transformation increased with decreasing HA/DCPD ratio. All HCl-etched scaffolds were observed to generate micropores, which improved the interconnectivity, while biomineralization was found to be the same for both the HCl-etched and non- etched scaffolds. In particular, hydrochloric acid etching is a promising method for improving the interconnectivity and porosity of the ceramic scaffolds.展开更多
Porous architecture in bone substitutes,notably the interconnectivity of pores,is a critical factor for bone ingrowth.However,controlling the pore interconnectivity while maintaining the microarchitecture has not yet ...Porous architecture in bone substitutes,notably the interconnectivity of pores,is a critical factor for bone ingrowth.However,controlling the pore interconnectivity while maintaining the microarchitecture has not yet been achieved using conventional methods,such as sintering.Herein,we fabricated a porous block using the crystal growth of calcium sulfate dihydrate,and controlled the pore interconnectivity by limiting the region of crystal growth.The calcium sulfate dihydrate blocks were transformed to bone apatite,carbonate apatite(CO_(3)Ap)through dissolution–precipitation reactions.Thus,CO_(3)Ap blocks with 15%and 30%interconnected pore volumes were obtained while maintaining the microarchitecture:they were designated as CO_(3)Ap-15 and CO_(3)Ap-30,respectively.At 4 weeks after implantation in a rabbit femur defect,new bone formed throughout CO_(3)Ap-30,whereas little bone was formed in the center region of CO_(3)Ap-15.At 12 weeks after implantation,a large portion of CO_(3)Ap-30 was replaced with new bone and the boundary with the host bone became blurred.In contrast,CO_(3)Ap-15 remained in the defect and the boundary with the host bone was still clear.Thus,the interconnected pores promote bone ingrowth,followed by replacement of the material with new bone.These findings provide a useful guide for designing bone substitutes for rapid bone regeneration.展开更多
A new era that will require more collaboration and shared benefits Business,trade,culture and technology have been globalized over a steady course of change and connection for the past 70 years.
Background: Aged skin exhibits visual alterations such as wrinkles, rough texture, pore dilation, and dull skin tone, as well as physiological aging, namely, decreased hydration and increased transepidermal water loss...Background: Aged skin exhibits visual alterations such as wrinkles, rough texture, pore dilation, and dull skin tone, as well as physiological aging, namely, decreased hydration and increased transepidermal water loss (TEWL). Recent advances in coherence tomography have also revealed that skin aging affects in vivo epidermal keratinocyte architecture. However, the interconnectivity between spatial architectural aging and visual/physiological aging parameters remains largely unknown. Purpose: To elucidate whether the tomographic keratinocyte architectural aging is correlated with visual and physiological skin aging parameters and to quantitatively evaluate the improvements of the architectural, visual, and physiological aging parameters by the daily treatment of the skin care formula containing Galactomyces Ferment Filtrate (GFF, 8X Pitera<sup>TM</sup>). Method: We measured the in vivo keratinocyte cellular architecture with two-photon stereoscopic tomography obtaining by-layer epidermal section images in 78 Asian females of various ages. Visual aging parameters were analyzed using a portable image capture system. Hydration and TEWL were also assessed. The anti-aging effects of GFF-containing skin moisturizer (SK-II LXP Cream<sup>TM</sup>) were also examined in two studies after twice-daily application for 2 (N = 35) and 4 (N = 32) weeks. Results: As for the keratinocyte cellular architecture, skin aging was significantly associated with decreased cell density and increased cell uniformity. These architectural aging parameters were significantly correlated with visual and physiological aging parameters, namely, rough texture, wrinkles, pore dilation, dull skin tone, dehydration, and increased TEWL. The strong interconnectivity allowed us to develop formulae to estimate the keratinocyte architecture from visual aging parameters. Moreover, twice-daily application of SK-II significantly improved the keratinocyte architecture associated with multiple skin aging visual and physiological parameters. Conclusion: Skin aging is a process involving mutual interconnections among epidermal keratinocyte cellular architecture, visual, and physiological parameters. The GFF-containing moisturizer SK-II effectively improves spatial architecture of keratinocytes in epidermis and these evaluated skin aging parameters in a new trajectory over the course of treatment. .展开更多
Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical...Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy stor-age devices at all technology readiness levels.Due to various challenging issues,especially limited stability,nano-and micro-structured(NMS)electrodes undergo fast electrochemical performance degradation.The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement,even though it only occupies comple-mentary and facilitating components for the main mechanism.However,extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies.This review will aim at highlighting these NMS scaffold design strategies,summariz-ing their corresponding strengths and challenges,and thereby outlining the potential solutions to resolve these challenges,design principles,and key perspectives for future research in this field.Therefore,this review will be one of the earliest reviews from this viewpoint.展开更多
Achieving historically anticipated improvement in the performance of integrated circuits is challenging,due to the increasing cost and complexity of the required technologies with each new generation.To overcome this ...Achieving historically anticipated improvement in the performance of integrated circuits is challenging,due to the increasing cost and complexity of the required technologies with each new generation.To overcome this limitation,the exploration and development of novel interconnect materials and processes are highly desirable in the microelectronics field.Molybdenum(Mo)is attracting attention as an advanced interconnect material due to its small resistivity size effect and high cohesive energy;however,effective processing methods for such materials have not been widely investigated.Here,we investigate the electrochemical behavior of ions in the confined nanopores that affect the electrical properties and microstructures of nanoscale Mo and Mo-Co alloys prepared via template-assisted electrodeposition.Additives in an electrolyte allow the deposition of extremely pure metal materials,due to their interac-tion with metal ions and nanopores.In this study,boric acid and tetrabutylammonium bisulfate(TBA)were added to an acetate bath to inhibit the hydrogen evolution reaction.TBA accelerated the reduction of Mo at the surface by inducing surface conduction on the nanopores.Metallic Mo nanowires with a 130 nm diameter synthesized through high-aspect-ratio nanopore engineering exhibited a resistivity of(63.0±17.9)μΩcm.We also evaluated the resistivities of Mo-Co alloy nanowires at various compo-sitions toward replacing irreducible conventional barrier/liner layers.An intermetallic compound formed at a Mo composition of 28.6 at%,the resistivity of the Mo-Co nanowire was(58.0±10.6)μΩcm,indicat-ing its superior electrical and adhesive properties in comparison with those of conventional barriers such as TaN and TiN.Furthermore,density functional theory and non-equilibrium Green's function calcula-tions confirmed that the vertical resistance of the via structure constructed from Mo-based materials was 21%lower than that of a conventional Cu/Ta/TaN structure.展开更多
Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency ...Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency lags much behind to their single junction counterparts due to the deficient interconnection layer(ICL) and defective subcells. To improve TSCs performance, we developed three kinds of ICL structures based on 1.34 and 0.96 e V PbS QDs subcells. The control, 1,2-ethanedithiol capped PbS QDs(PbS-EDT)/Au/tin dioxide(SnO_(2))/zinc oxide(Zn O), utilized SnO_(2) layer to obtain high surface compactness.However, its energy level mismatch causes incomplete recombination. Bypassing it, the second ICL(PbS-EDT/Au/Zn O) removed SnO_(2) and boosted the power conversion efficiency(PCE) from 5.75% to 8.69%. In the third ICL(PbS-EDT/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)/Au/Zn O), a thin layer of PTAA can effectively fill fissures on the surface of PbS-EDT and also protect the front cells from solvent penetration. This TSC obtained a PCE of 9.49% with an open circuit voltage of 0.91 V, a short circuit current density of 15.47 m A/cm~2, and a fill factor of 67.7%. To the best of our knowledge, this was the highest PCE achieved by all PbS QD TSCs reported to date. These TSCs maintained stable performance for a long working time under ambient conditions.展开更多
The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control p...The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control problem and sufficient and necessary conditions for the stabilization problem of the interconnected systems are given for the first time.The main challenge lies in three aspects:Firstly,the asymmetric information results in coupling between control and estimation and failure of the separation principle.Secondly,two extra unknown variables are generated by asymmetric information(different information filtration)when solving forward-backward stochastic difference equations.Thirdly,the existence of additive noise makes the study of mean-square boundedness an obstacle.The adopted technique is proving and assuming the linear form of controllers and establishing the equivalence between the two systems with and without additive noise.A dual-motor parallel drive system is presented to demonstrate the validity of the proposed algorithm.展开更多
Cryogenic oxide-confined vertical-cavity surface-emitting laser(VCSEL)has promising application in cryogenic optical interconnect for cryogenic computing.In this paper,we demonstrate a cryogenic 850-nm oxide-confined ...Cryogenic oxide-confined vertical-cavity surface-emitting laser(VCSEL)has promising application in cryogenic optical interconnect for cryogenic computing.In this paper,we demonstrate a cryogenic 850-nm oxide-confined VCSEL at around 4 K.The cryogenic VCSEL with an optical oxide aperture of 6.5μm in diameter can operate in single fundamental mode with a side-mode suppression-ratio of 36 dB at 3.6 K,and the fiber-coupled output power reaches 1 mW at 5 mA.The small signal modulation measurements at 298 and 292 K show the fabricated VCSEL has the potential to achieve a high modulation bandwidth at cryogenic temperature.展开更多
The reliability of a network is an important indicator for maintaining communication and ensuring its stable operation. Therefore, the assessment of reliability in underlying interconnection networks has become an inc...The reliability of a network is an important indicator for maintaining communication and ensuring its stable operation. Therefore, the assessment of reliability in underlying interconnection networks has become an increasingly important research issue. However, at present, the reliability assessment of many interconnected networks is not yet accurate,which inevitably weakens their fault tolerance and diagnostic capabilities. To improve network reliability,researchers have proposed various methods and strategies for precise assessment. This paper introduces a novel family of interconnection networks called general matching composed networks(gMCNs), which is based on the common characteristics of network topology structure. After analyzing the topological properties of gMCNs, we establish a relationship between super connectivity and conditional diagnosability of gMCNs. Furthermore, we assess the reliability of g MCNs, and determine the conditional diagnosability of many interconnection networks.展开更多
The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which ...The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip,but also improves the system performance through advanced heterogeneous integrated packaging.This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection.The research status,development trend and application of ultra-low loss optical waveguides,high-speed detectors,high-speed modulators,lasers and 2D,2.5D,3D and monolithic integration are focused on.展开更多
Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-d...Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-dominant crystalline silicon(c-Si)is particularly attractive;simple estimates based on the bandgap matching indicate that the efficiency limit in such tandem device is as high as 46%.However,state-of-the-art perovskite/c-Si TSCs only achieve an efficiency of~32.5%,implying significant challenges and also rich opportunities.In this review,we start with the operating mechanism and efficiency limit of TSCs,followed by systematical discussions on wide-bandgap perovskite front cells,interface selective contacts,and electrical interconnection layer,as well as photon management for highly efficient perovskite/c-Si TSCs.We highlight the challenges in this field and provide our understanding of future research directions toward highly efficient and stable large-scale wide-bandgap perovskite front cells for the commercialization of perovskite/c-Si TSCs.展开更多
We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field t...We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field theory and derive,in a non-parametric setting,the sensitivity of the dissimilarity between the desired and the actual morphologies to arbitrary perturbations in the guiding pattern shape.The sensitivity is then used for the optimization of the confining pattern shapes such that the dissimilarity between the desired and the actual morphologies is minimized.The efficiency and robustness of the proposed gradient-based algorithm are demonstrated in a number of examples related to templating vertical interconnect accesses(VIA).展开更多
Increasing Internet of Things(IoT)device connectivity makes botnet attacks more dangerous,carrying catastrophic hazards.As IoT botnets evolve,their dynamic and multifaceted nature hampers conventional detection method...Increasing Internet of Things(IoT)device connectivity makes botnet attacks more dangerous,carrying catastrophic hazards.As IoT botnets evolve,their dynamic and multifaceted nature hampers conventional detection methods.This paper proposes a risk assessment framework based on fuzzy logic and Particle Swarm Optimization(PSO)to address the risks associated with IoT botnets.Fuzzy logic addresses IoT threat uncertainties and ambiguities methodically.Fuzzy component settings are optimized using PSO to improve accuracy.The methodology allows for more complex thinking by transitioning from binary to continuous assessment.Instead of expert inputs,PSO data-driven tunes rules and membership functions.This study presents a complete IoT botnet risk assessment system.The methodology helps security teams allocate resources by categorizing threats as high,medium,or low severity.This study shows how CICIoT2023 can assess cyber risks.Our research has implications beyond detection,as it provides a proactive approach to risk management and promotes the development of more secure IoT environments.展开更多
Molecular Dynamics(MD)simulation for computing Interatomic Potential(IAP)is a very important High-Performance Computing(HPC)application.MD simulation on particles of experimental relevance takes huge computation time,...Molecular Dynamics(MD)simulation for computing Interatomic Potential(IAP)is a very important High-Performance Computing(HPC)application.MD simulation on particles of experimental relevance takes huge computation time,despite using an expensive high-end server.Heterogeneous computing,a combination of the Field Programmable Gate Array(FPGA)and a computer,is proposed as a solution to compute MD simulation efficiently.In such heterogeneous computation,communication between FPGA and Computer is necessary.One such MD simulation,explained in the paper,is the(Artificial Neural Network)ANN-based IAP computation of gold(Au_(147)&Au_(309))nanoparticles.MD simulation calculates the forces between atoms and the total energy of the chemical system.This work proposes the novel design and implementation of an ANN IAP-based MD simulation for Au_(147)&Au_(309) using communication protocols,such as Universal Asynchronous Receiver-Transmitter(UART)and Ethernet,for communication between the FPGA and the host computer.To improve the latency of MD simulation through heterogeneous computing,Universal Asynchronous Receiver-Transmitter(UART)and Ethernet communication protocols were explored to conduct MD simulation of 50,000 cycles.In this study,computation times of 17.54 and 18.70 h were achieved with UART and Ethernet,respectively,compared to the conventional server time of 29 h for Au_(147) nanoparticles.The results pave the way for the development of a Lab-on-a-chip application.展开更多
The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order ...The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative(FOPID)controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration.To improve load frequency control,the proposed controllers are applied to a two-area interconnectedmicrogrid system incorporating diverse energy sources,such as wind turbines,photovoltaic cells,diesel generators,and various storage technologies.A novelmeta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers.The efficacy of the advanced FOPID controllers is demonstrated through comparative analyses against traditional proportional integral derivative(PID)and FOPID controllers,showcasing superior performance inmanaging systemfluctuations.The optimization algorithm is also evaluated against other artificial intelligent methods for parameter optimization,affirming the proposed solution’s efficiency.The robustness of the intelligent controllers against system uncertainties is further validated under extensive power disturbances,proving their capability to maintain grid stability.The dual-controller configuration ensures redundancy,allowing them to operate as mutual backups,enhancing system reliability.This research underlines the importance of sophisticated control strategies for future-proofing microgrid operations against the backdrop of evolving energy landscapes.展开更多
Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of...Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method.展开更多
As an effective approach to achieve the“dual-carbon”goal,the grid-connected capacity of renewable energy increases constantly.Photovoltaics are the most widely used renewable energy sources and have been applied on ...As an effective approach to achieve the“dual-carbon”goal,the grid-connected capacity of renewable energy increases constantly.Photovoltaics are the most widely used renewable energy sources and have been applied on various occasions.However,the inherent randomness,intermittency,and weak support of grid-connected equipment not only cause changes in the original flow characteristics of the grid but also result in complex fault characteristics.Traditional overcurrent and differential protection methods cannot respond accurately due to the effects of unknown renewable energy sources.Therefore,a longitudinal protection method based on virtual measurement of current restraint is proposed in this paper.The positive sequence current data and the network parameters are used to calculate the virtual measurement current which compensates for the output current of photovoltaic(PV).The waveform difference between the virtual measured current and the terminal current for internal and external faults is used to construct the protection method.An improved edit distance algorithm is proposed to measure the similarity between virtual measurement current and terminal measurement current.Finally,the feasibility of the protection method is verified through PSCAD simulation.展开更多
基金supported by grants from Shenzhen Key Medical Subject(No.SZXK023)Shenzhen“SanMing”Project of Medicine(No.SZSM201612092)+3 种基金Shenzhen Research and Development Projects(No.JCYJ20170307111755218)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515011290)National Key Research and Development Program of China(No.2016YFC1102103)China Postdoctoral Science Foundation(No.2020M672756)
文摘Interconnectivity is the key characteristic of bone tissue engineering scaffold modulating cell migration,blood vessels invasion and transport of nutrient and waste.However,efforts and understanding of the interconnectivity of porous Mg is limited due to the diverse architectures of pore struts and pore size distribution of Mg scaffold systems.In this work,biomimetic hierarchical porous Mg scaffolds with tailored interconnectivity as well as pore size distribution were prepared by template replication of infiltration casting.Mg scaffold with better interconnectivity showed lower mechanical strength.Enlarging interconnected pores would enhance the interconnectivity of the whole scaffold and reduce the change of ion concentration,pH value and osmolality of the degradation microenvironment due to the lower specific surface area.Nevertheless,the degradation rates of five tested Mg scaffolds were no different because of the same geometry of strut unit.Direct cell culture and evaluation of cell density at both sides of four typical Mg scaffolds indicated that cell migration through hierarchical porous Mg scaffolds could be enhanced by not only bigger interconnected pore size but also larger main pore size.In summary,design of interconnectivity in terms of pore size distribution could regulate mechanical strength,microenvironment in cell culture condition and cell migration potential,and beyond that it shows great potential for personalized therapy which could facilitate the regeneration process.
基金This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences[grant number XDA19020201].
文摘Open data strategies are being adopted in disaster-related data particularly because of the need to provide information on global targets and indicators for implementation of the Sendai Framework for Disaster Risk Reduction 2015–2030.In all phases of disaster risk management including forecasting,emergency response and post-disaster reconstruction,the need for interconnected multidisciplinary open data for collaborative reporting as well as study and analysis are apparent,in order to determine disaster impact data in timely and reportable manner.The extraordinary progress in computing and information technology in the past decade,such as broad local and wide-area network connectivity(e.g.Internet),highperformance computing,service and cloud computing,big data methods and mobile devices,provides the technical foundation for connecting open data to support disaster risk research.A new generation of disaster data infrastructure based on interconnected open data is evolving rapidly.There are two levels in the conceptual model of Linked Open Data for Global Disaster Risk Research(LODGD)Working Group of the Committee on Data for Science and Technology(CODATA),which is the Committee on Data of the International Council for Science(ICSU):data characterization and data connection.In data characterization,the knowledge about disaster taxonomy and data dependency on disaster events requires specific scientific study as it aims to understand and present the correlation between specific disaster events and scientific data through the integration of literature analysis and semantic knowledge discovery.Data connection concepts deal with technical methods to connect distributed data resources identified by data characterization of disaster type.In the science community,interconnected open data for disaster risk impact assessment are beginning to influence how disaster data are shared,and this will need to extend data coverage and provide better ways of utilizing data across domains where innovation and integration are now necessarily needed.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A4A01014136)
文摘Porous hydroxyapatite (HA)-tricalcium phosphate (TCP) ceramic scaffolds were prepared using a screw-type extrusion method with polymer beads. HA and dicalcium phosphate dehydrates (DCPD) were added at various ratios to obtain different HA/TCP ratios in sintered ceramic scaffolds. To further enhance the pore interconnectivity and porosity, the developed porous ceramic scaffolds were etched with acid solutions. The maximum porosity (- 85%) was observed in the Ca-P scaffold with the lowest HA (-7%) content. On the other hand, the maximum compressive strength was noted in the scaffolds with the highest HA content ( - 85%). X-ray diffraction showed that the extent of the fl-TCP to a-TCP phase transformation increased with decreasing HA/DCPD ratio. All HCl-etched scaffolds were observed to generate micropores, which improved the interconnectivity, while biomineralization was found to be the same for both the HCl-etched and non- etched scaffolds. In particular, hydrochloric acid etching is a promising method for improving the interconnectivity and porosity of the ceramic scaffolds.
文摘Porous architecture in bone substitutes,notably the interconnectivity of pores,is a critical factor for bone ingrowth.However,controlling the pore interconnectivity while maintaining the microarchitecture has not yet been achieved using conventional methods,such as sintering.Herein,we fabricated a porous block using the crystal growth of calcium sulfate dihydrate,and controlled the pore interconnectivity by limiting the region of crystal growth.The calcium sulfate dihydrate blocks were transformed to bone apatite,carbonate apatite(CO_(3)Ap)through dissolution–precipitation reactions.Thus,CO_(3)Ap blocks with 15%and 30%interconnected pore volumes were obtained while maintaining the microarchitecture:they were designated as CO_(3)Ap-15 and CO_(3)Ap-30,respectively.At 4 weeks after implantation in a rabbit femur defect,new bone formed throughout CO_(3)Ap-30,whereas little bone was formed in the center region of CO_(3)Ap-15.At 12 weeks after implantation,a large portion of CO_(3)Ap-30 was replaced with new bone and the boundary with the host bone became blurred.In contrast,CO_(3)Ap-15 remained in the defect and the boundary with the host bone was still clear.Thus,the interconnected pores promote bone ingrowth,followed by replacement of the material with new bone.These findings provide a useful guide for designing bone substitutes for rapid bone regeneration.
文摘A new era that will require more collaboration and shared benefits Business,trade,culture and technology have been globalized over a steady course of change and connection for the past 70 years.
文摘Background: Aged skin exhibits visual alterations such as wrinkles, rough texture, pore dilation, and dull skin tone, as well as physiological aging, namely, decreased hydration and increased transepidermal water loss (TEWL). Recent advances in coherence tomography have also revealed that skin aging affects in vivo epidermal keratinocyte architecture. However, the interconnectivity between spatial architectural aging and visual/physiological aging parameters remains largely unknown. Purpose: To elucidate whether the tomographic keratinocyte architectural aging is correlated with visual and physiological skin aging parameters and to quantitatively evaluate the improvements of the architectural, visual, and physiological aging parameters by the daily treatment of the skin care formula containing Galactomyces Ferment Filtrate (GFF, 8X Pitera<sup>TM</sup>). Method: We measured the in vivo keratinocyte cellular architecture with two-photon stereoscopic tomography obtaining by-layer epidermal section images in 78 Asian females of various ages. Visual aging parameters were analyzed using a portable image capture system. Hydration and TEWL were also assessed. The anti-aging effects of GFF-containing skin moisturizer (SK-II LXP Cream<sup>TM</sup>) were also examined in two studies after twice-daily application for 2 (N = 35) and 4 (N = 32) weeks. Results: As for the keratinocyte cellular architecture, skin aging was significantly associated with decreased cell density and increased cell uniformity. These architectural aging parameters were significantly correlated with visual and physiological aging parameters, namely, rough texture, wrinkles, pore dilation, dull skin tone, dehydration, and increased TEWL. The strong interconnectivity allowed us to develop formulae to estimate the keratinocyte architecture from visual aging parameters. Moreover, twice-daily application of SK-II significantly improved the keratinocyte architecture associated with multiple skin aging visual and physiological parameters. Conclusion: Skin aging is a process involving mutual interconnections among epidermal keratinocyte cellular architecture, visual, and physiological parameters. The GFF-containing moisturizer SK-II effectively improves spatial architecture of keratinocytes in epidermis and these evaluated skin aging parameters in a new trajectory over the course of treatment. .
基金The authors acknowledge support from the German Research Foundation(DFG:LE 2249/5-1)the Sino-German Center for Research Promotion(GZ1579)+1 种基金Yunnan Fundamental Research Projects(202201AW070014)Jiajia Qiu and Yu Duan appreciate support from the China Scholarship Council(No.201908530218&202206990027).
文摘Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy stor-age devices at all technology readiness levels.Due to various challenging issues,especially limited stability,nano-and micro-structured(NMS)electrodes undergo fast electrochemical performance degradation.The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement,even though it only occupies comple-mentary and facilitating components for the main mechanism.However,extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies.This review will aim at highlighting these NMS scaffold design strategies,summariz-ing their corresponding strengths and challenges,and thereby outlining the potential solutions to resolve these challenges,design principles,and key perspectives for future research in this field.Therefore,this review will be one of the earliest reviews from this viewpoint.
基金supported by the Basic Science Research Program of the National Research Foundation of Koreafunded by the Ministry of Education of the Republic of Korea(2021R1A6A3A13046504)+1 种基金the Ministry of Science and ICT of the Republic of Korea(2022M3H4A1A04096339 and 2020M3F3A2A01081585)the Samsung Electronics Co.,Ltd.(IO210317-08500-01).
文摘Achieving historically anticipated improvement in the performance of integrated circuits is challenging,due to the increasing cost and complexity of the required technologies with each new generation.To overcome this limitation,the exploration and development of novel interconnect materials and processes are highly desirable in the microelectronics field.Molybdenum(Mo)is attracting attention as an advanced interconnect material due to its small resistivity size effect and high cohesive energy;however,effective processing methods for such materials have not been widely investigated.Here,we investigate the electrochemical behavior of ions in the confined nanopores that affect the electrical properties and microstructures of nanoscale Mo and Mo-Co alloys prepared via template-assisted electrodeposition.Additives in an electrolyte allow the deposition of extremely pure metal materials,due to their interac-tion with metal ions and nanopores.In this study,boric acid and tetrabutylammonium bisulfate(TBA)were added to an acetate bath to inhibit the hydrogen evolution reaction.TBA accelerated the reduction of Mo at the surface by inducing surface conduction on the nanopores.Metallic Mo nanowires with a 130 nm diameter synthesized through high-aspect-ratio nanopore engineering exhibited a resistivity of(63.0±17.9)μΩcm.We also evaluated the resistivities of Mo-Co alloy nanowires at various compo-sitions toward replacing irreducible conventional barrier/liner layers.An intermetallic compound formed at a Mo composition of 28.6 at%,the resistivity of the Mo-Co nanowire was(58.0±10.6)μΩcm,indicat-ing its superior electrical and adhesive properties in comparison with those of conventional barriers such as TaN and TiN.Furthermore,density functional theory and non-equilibrium Green's function calcula-tions confirmed that the vertical resistance of the via structure constructed from Mo-based materials was 21%lower than that of a conventional Cu/Ta/TaN structure.
基金National Natural Science Foundation of China (Grant No. 62374065)Interdisciplinary Research promotion of HUST (No. 2023JCYJ040)+2 种基金Innovation Project of Optics Valley Laboratory (No. OVL2021BG008)Program of Science Technology of Wenzhou City (No. G20210011)financial support from the Innovation and Technology Commission (Grant no. MHP/104/21)。
文摘Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency lags much behind to their single junction counterparts due to the deficient interconnection layer(ICL) and defective subcells. To improve TSCs performance, we developed three kinds of ICL structures based on 1.34 and 0.96 e V PbS QDs subcells. The control, 1,2-ethanedithiol capped PbS QDs(PbS-EDT)/Au/tin dioxide(SnO_(2))/zinc oxide(Zn O), utilized SnO_(2) layer to obtain high surface compactness.However, its energy level mismatch causes incomplete recombination. Bypassing it, the second ICL(PbS-EDT/Au/Zn O) removed SnO_(2) and boosted the power conversion efficiency(PCE) from 5.75% to 8.69%. In the third ICL(PbS-EDT/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)/Au/Zn O), a thin layer of PTAA can effectively fill fissures on the surface of PbS-EDT and also protect the front cells from solvent penetration. This TSC obtained a PCE of 9.49% with an open circuit voltage of 0.91 V, a short circuit current density of 15.47 m A/cm~2, and a fill factor of 67.7%. To the best of our knowledge, this was the highest PCE achieved by all PbS QD TSCs reported to date. These TSCs maintained stable performance for a long working time under ambient conditions.
基金supported by the National Natural Science Foundation of China(62273213,62073199,62103241)Natural Science Foundation of Shandong Province for Innovation and Development Joint Funds(ZR2022LZH001)+4 种基金Natural Science Foundation of Shandong Province(ZR2020MF095,ZR2021QF107)Taishan Scholarship Construction Engineeringthe Original Exploratory Program Project of National Natural Science Foundation of China(62250056)Major Basic Research of Natural Science Foundation of Shandong Province(ZR2021ZD14)High-level Talent Team Project of Qingdao West Coast New Area(RCTD-JC-2019-05)。
文摘The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control problem and sufficient and necessary conditions for the stabilization problem of the interconnected systems are given for the first time.The main challenge lies in three aspects:Firstly,the asymmetric information results in coupling between control and estimation and failure of the separation principle.Secondly,two extra unknown variables are generated by asymmetric information(different information filtration)when solving forward-backward stochastic difference equations.Thirdly,the existence of additive noise makes the study of mean-square boundedness an obstacle.The adopted technique is proving and assuming the linear form of controllers and establishing the equivalence between the two systems with and without additive noise.A dual-motor parallel drive system is presented to demonstrate the validity of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(Nos.62275243,62075209,and 61675193)the Beijing Natural Science Foundation(No.Z200006).
文摘Cryogenic oxide-confined vertical-cavity surface-emitting laser(VCSEL)has promising application in cryogenic optical interconnect for cryogenic computing.In this paper,we demonstrate a cryogenic 850-nm oxide-confined VCSEL at around 4 K.The cryogenic VCSEL with an optical oxide aperture of 6.5μm in diameter can operate in single fundamental mode with a side-mode suppression-ratio of 36 dB at 3.6 K,and the fiber-coupled output power reaches 1 mW at 5 mA.The small signal modulation measurements at 298 and 292 K show the fabricated VCSEL has the potential to achieve a high modulation bandwidth at cryogenic temperature.
基金supported by National Natural Science Foundation of China (No.62362005)。
文摘The reliability of a network is an important indicator for maintaining communication and ensuring its stable operation. Therefore, the assessment of reliability in underlying interconnection networks has become an increasingly important research issue. However, at present, the reliability assessment of many interconnected networks is not yet accurate,which inevitably weakens their fault tolerance and diagnostic capabilities. To improve network reliability,researchers have proposed various methods and strategies for precise assessment. This paper introduces a novel family of interconnection networks called general matching composed networks(gMCNs), which is based on the common characteristics of network topology structure. After analyzing the topological properties of gMCNs, we establish a relationship between super connectivity and conditional diagnosability of gMCNs. Furthermore, we assess the reliability of g MCNs, and determine the conditional diagnosability of many interconnection networks.
基金Project supported in part by the National Key Research and Development Program of China(Grant No.2021YFB2206504)the National Natural Science Foundation of China(Grant No.62235017)the China Postdoctoral Science Foundation(Grant No.2021M703125).
文摘The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip,but also improves the system performance through advanced heterogeneous integrated packaging.This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection.The research status,development trend and application of ultra-low loss optical waveguides,high-speed detectors,high-speed modulators,lasers and 2D,2.5D,3D and monolithic integration are focused on.
基金the talent project of ZJU-Hangzhou Global Scientific and Technological Innovation Center(No.02170000-K02013017)project of National Natural Science Foundation of China(No.61721005)
文摘Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-dominant crystalline silicon(c-Si)is particularly attractive;simple estimates based on the bandgap matching indicate that the efficiency limit in such tandem device is as high as 46%.However,state-of-the-art perovskite/c-Si TSCs only achieve an efficiency of~32.5%,implying significant challenges and also rich opportunities.In this review,we start with the operating mechanism and efficiency limit of TSCs,followed by systematical discussions on wide-bandgap perovskite front cells,interface selective contacts,and electrical interconnection layer,as well as photon management for highly efficient perovskite/c-Si TSCs.We highlight the challenges in this field and provide our understanding of future research directions toward highly efficient and stable large-scale wide-bandgap perovskite front cells for the commercialization of perovskite/c-Si TSCs.
文摘We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field theory and derive,in a non-parametric setting,the sensitivity of the dissimilarity between the desired and the actual morphologies to arbitrary perturbations in the guiding pattern shape.The sensitivity is then used for the optimization of the confining pattern shapes such that the dissimilarity between the desired and the actual morphologies is minimized.The efficiency and robustness of the proposed gradient-based algorithm are demonstrated in a number of examples related to templating vertical interconnect accesses(VIA).
文摘Increasing Internet of Things(IoT)device connectivity makes botnet attacks more dangerous,carrying catastrophic hazards.As IoT botnets evolve,their dynamic and multifaceted nature hampers conventional detection methods.This paper proposes a risk assessment framework based on fuzzy logic and Particle Swarm Optimization(PSO)to address the risks associated with IoT botnets.Fuzzy logic addresses IoT threat uncertainties and ambiguities methodically.Fuzzy component settings are optimized using PSO to improve accuracy.The methodology allows for more complex thinking by transitioning from binary to continuous assessment.Instead of expert inputs,PSO data-driven tunes rules and membership functions.This study presents a complete IoT botnet risk assessment system.The methodology helps security teams allocate resources by categorizing threats as high,medium,or low severity.This study shows how CICIoT2023 can assess cyber risks.Our research has implications beyond detection,as it provides a proactive approach to risk management and promotes the development of more secure IoT environments.
文摘Molecular Dynamics(MD)simulation for computing Interatomic Potential(IAP)is a very important High-Performance Computing(HPC)application.MD simulation on particles of experimental relevance takes huge computation time,despite using an expensive high-end server.Heterogeneous computing,a combination of the Field Programmable Gate Array(FPGA)and a computer,is proposed as a solution to compute MD simulation efficiently.In such heterogeneous computation,communication between FPGA and Computer is necessary.One such MD simulation,explained in the paper,is the(Artificial Neural Network)ANN-based IAP computation of gold(Au_(147)&Au_(309))nanoparticles.MD simulation calculates the forces between atoms and the total energy of the chemical system.This work proposes the novel design and implementation of an ANN IAP-based MD simulation for Au_(147)&Au_(309) using communication protocols,such as Universal Asynchronous Receiver-Transmitter(UART)and Ethernet,for communication between the FPGA and the host computer.To improve the latency of MD simulation through heterogeneous computing,Universal Asynchronous Receiver-Transmitter(UART)and Ethernet communication protocols were explored to conduct MD simulation of 50,000 cycles.In this study,computation times of 17.54 and 18.70 h were achieved with UART and Ethernet,respectively,compared to the conventional server time of 29 h for Au_(147) nanoparticles.The results pave the way for the development of a Lab-on-a-chip application.
文摘The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative(FOPID)controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration.To improve load frequency control,the proposed controllers are applied to a two-area interconnectedmicrogrid system incorporating diverse energy sources,such as wind turbines,photovoltaic cells,diesel generators,and various storage technologies.A novelmeta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers.The efficacy of the advanced FOPID controllers is demonstrated through comparative analyses against traditional proportional integral derivative(PID)and FOPID controllers,showcasing superior performance inmanaging systemfluctuations.The optimization algorithm is also evaluated against other artificial intelligent methods for parameter optimization,affirming the proposed solution’s efficiency.The robustness of the intelligent controllers against system uncertainties is further validated under extensive power disturbances,proving their capability to maintain grid stability.The dual-controller configuration ensures redundancy,allowing them to operate as mutual backups,enhancing system reliability.This research underlines the importance of sophisticated control strategies for future-proofing microgrid operations against the backdrop of evolving energy landscapes.
文摘Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method.
基金funded by State Grid Anhui Electric Power Co.,Ltd.Science and Technology Project(52120021N00L)the National Key Research and Development Program of China(2022YFB2400015).
文摘As an effective approach to achieve the“dual-carbon”goal,the grid-connected capacity of renewable energy increases constantly.Photovoltaics are the most widely used renewable energy sources and have been applied on various occasions.However,the inherent randomness,intermittency,and weak support of grid-connected equipment not only cause changes in the original flow characteristics of the grid but also result in complex fault characteristics.Traditional overcurrent and differential protection methods cannot respond accurately due to the effects of unknown renewable energy sources.Therefore,a longitudinal protection method based on virtual measurement of current restraint is proposed in this paper.The positive sequence current data and the network parameters are used to calculate the virtual measurement current which compensates for the output current of photovoltaic(PV).The waveform difference between the virtual measured current and the terminal current for internal and external faults is used to construct the protection method.An improved edit distance algorithm is proposed to measure the similarity between virtual measurement current and terminal measurement current.Finally,the feasibility of the protection method is verified through PSCAD simulation.