The widespread adoption of Maisotsenko gas turbine cycle(MGTC)is significantly constrained by the design and manufacturing complexity of the saturator.The proposition of innovative approaches to regulate the water car...The widespread adoption of Maisotsenko gas turbine cycle(MGTC)is significantly constrained by the design and manufacturing complexity of the saturator.The proposition of innovative approaches to regulate the water carrying capacity and operational environment of the saturator,coupled with the performance and economic evaluation of systems under various configurations,can substantially facilitate its commercial implementation.Unlike the conventional two-stage MGTC system that solely comprises aftercooling and regenerative processes,this study proposes a three-stage MGTC system with an intercooling process(IMGTC),which considers the reuse of cooling water and energy recovery.The pricing allocation and energy depreciation characteristics of components are analyzed,and the impact of key variables is considered.Finally,economic optimization of the system is conducted using ISIGHT to identify the optimal parameter combination and results.The results indicate that the saturator price of IMGTC is lower and its exergy efficiency is higher than that of MGTC.The average water capacity of the IMGTC saturator is only 57.4%of that of the MGTC saturator,but the average exergy efficiency of IMGTC is 1.1%higher than that of MGTC.Moreover,external parameters all lead to the levelized cost of electricity(LCOE).Thermo-economic optimization shows that the optimal LCOE of IMGTC is 0.26%lower than that of MGTC.This study confirms the feasibility of IMGTC,as well as its thermodynamic and economic advantages over MGTC.展开更多
This paper focuses on investigations encompassing comparative assessment of gasturbine cycle options.More specifically,investigation was caried out of technical performanceof turboshaft engine cycles based on existing...This paper focuses on investigations encompassing comparative assessment of gasturbine cycle options.More specifically,investigation was caried out of technical performanceof turboshaft engine cycles based on existing simple cycle(SC)and its projected modifiedcycles for civil helicopter application.Technically,thermal efficiency,specific fuel consump-tion,and power output are of paramount importance to the overall performance of gas urbineengines.In course of carrying out this research,turbomatch software established at CranfieldUniversity based on gas turbine theory was applied to conduct simulation of a simple cycle(baseline)two-spool helicopter turboshaft engine model with free power turbine.Similarly,some modified gas urbine cycle configurations incoporating unconventional components,such as engine cycle with low pressure compressor(LPC)zero-staged,recuperated enginecycle,and intercooled/recuperated(ICR)engine cycle,were also simulated.In doing so,designpoint(DP)and off-design point(OD)performances of the engine models were established.Thepercentage changes in performance parameters of the modified cycle engines over the simplecycle were evaluated and it was found that to a large extent,the modified engine cycles withunconventional components exhibit better performances in terms of thermal efficiency andspecific fuel consumption than the traditional simple cycle engine.This research made use ofpublic domain open source references.展开更多
This paper considers comparative assessment of simple and advanced cycle small-scale aero-derivative industrial gas turbines derived from helicopter engines.More particularly,investigation was made of technical perfor...This paper considers comparative assessment of simple and advanced cycle small-scale aero-derivative industrial gas turbines derived from helicopter engines.More particularly,investigation was made of technical performance of the small-scale aero-derivative engine cycles based on existing and projected cycles for applications in industrial power generation,combined heat and power concept,rotating equipment driving,and/or allied processes.The investigation was done by carrying out preliminary design and performance simulation of a simple cycle(baseline)two-spool small-scale aero-derivative turboshaft engine model,and some advanced counterpart aero-derivative configurations.The advanced configurations consist of recuperated and intercooled/recuperated engine cycles of same nominal power rating of 1.567 MW.The baseline model was derived from the conversion of an existing helicopter engine model.In doing so,design point and off-design point performances of the engine models were established.In comparing their performances,it was observed that to a large extent,the advanced engine cycles showed superior performance in terms of thermal efficiency,and specific fuel consumption.In numerical terms,thermal efficiencies of recuperated engine cycle,and intercooled/recuperated engine cycles,over the simple cycle at DP increased by 13.5%,and 14.5%respectively,whereas specific fuel consumption of these cycles over simple cycle at DP decreased by 12.5%,and 13%respectively.This research relied on open access public literature for data.展开更多
Current study deals with performance evaluation of the solar power tower driven recompression with main com-pressor intercooling(RMCIC)supercritical CO_(2)cycle incorporating the parallel double evaporator organic Ran...Current study deals with performance evaluation of the solar power tower driven recompression with main com-pressor intercooling(RMCIC)supercritical CO_(2)cycle incorporating the parallel double evaporator organic Rank-ine cycle(PDORC)as bottoming cycle using low global warming potential fluids to reduce the global warming and ozone depletion.Using the PDORC instead of the basic organic Rankine cycle,waste heat from the intercooler and cycle exhaust were recovered simultaneously to enhance performance of the standalone RMCIC cycle.Exergy,thermal efficiency,efficiency improvement and waste recovery ratio were considered as performance parameters.A computer program was made in engineering equation solver to simulate the model.It was concluded that by the incorporation of the PDORC thermal efficiency was improved by 7-8%at reference conditions.Maximum combined cycle’s thermal and exergy efficiency were found 54.42%and 80.39%respectively of 0.95 kW/m^(2)of solar irradiation based on R1243zf working fluid.Among the results it was also found that maximum waste heat was recovered by the R1243zf about 54.22%at 0.95 effectiveness of low temperature recuperator.展开更多
The performance of a marine gas turbine intercooler operating in wet condition was evaluated.The intercooler was a cross-flow plate-fin heat exchanger that used air and pure water as its working fluids at the hot and ...The performance of a marine gas turbine intercooler operating in wet condition was evaluated.The intercooler was a cross-flow plate-fin heat exchanger that used air and pure water as its working fluids at the hot and cold sides,respectively.The heat transfer performance and the water vapor condensation were investigated for a relative humidity of the inlet air that reached 100% during warship cruise.The condensation of the water vapors increased the hot side outlet temperature by a certain amount,which could in turn influence the performance of the compressor downstream.The condensate film thickness and the void fraction were calculated based on an annular two-phase flow model.It is found that water vapor condensation in hot flow channel increases the outlet temperature with a maximum value of 7.3℃ in the case of 100% relative humidity.The calculated liquid film thickness reaches a maximum value of 4μm,which indicates negligible thermal resistance to heat transfer.The results of liquid film thicknesses also provide a qualitative prediction of the diameter distribution of the condensate water droplets.展开更多
基金support from the fund of State Key Laboratory of Long-life High Temperature Materials(DEC8300CG202210279EE280285)the Fundamental Research Funds for the Central Universities(501XTCX2023146001).
文摘The widespread adoption of Maisotsenko gas turbine cycle(MGTC)is significantly constrained by the design and manufacturing complexity of the saturator.The proposition of innovative approaches to regulate the water carrying capacity and operational environment of the saturator,coupled with the performance and economic evaluation of systems under various configurations,can substantially facilitate its commercial implementation.Unlike the conventional two-stage MGTC system that solely comprises aftercooling and regenerative processes,this study proposes a three-stage MGTC system with an intercooling process(IMGTC),which considers the reuse of cooling water and energy recovery.The pricing allocation and energy depreciation characteristics of components are analyzed,and the impact of key variables is considered.Finally,economic optimization of the system is conducted using ISIGHT to identify the optimal parameter combination and results.The results indicate that the saturator price of IMGTC is lower and its exergy efficiency is higher than that of MGTC.The average water capacity of the IMGTC saturator is only 57.4%of that of the MGTC saturator,but the average exergy efficiency of IMGTC is 1.1%higher than that of MGTC.Moreover,external parameters all lead to the levelized cost of electricity(LCOE).Thermo-economic optimization shows that the optimal LCOE of IMGTC is 0.26%lower than that of MGTC.This study confirms the feasibility of IMGTC,as well as its thermodynamic and economic advantages over MGTC.
文摘This paper focuses on investigations encompassing comparative assessment of gasturbine cycle options.More specifically,investigation was caried out of technical performanceof turboshaft engine cycles based on existing simple cycle(SC)and its projected modifiedcycles for civil helicopter application.Technically,thermal efficiency,specific fuel consump-tion,and power output are of paramount importance to the overall performance of gas urbineengines.In course of carrying out this research,turbomatch software established at CranfieldUniversity based on gas turbine theory was applied to conduct simulation of a simple cycle(baseline)two-spool helicopter turboshaft engine model with free power turbine.Similarly,some modified gas urbine cycle configurations incoporating unconventional components,such as engine cycle with low pressure compressor(LPC)zero-staged,recuperated enginecycle,and intercooled/recuperated(ICR)engine cycle,were also simulated.In doing so,designpoint(DP)and off-design point(OD)performances of the engine models were established.Thepercentage changes in performance parameters of the modified cycle engines over the simplecycle were evaluated and it was found that to a large extent,the modified engine cycles withunconventional components exhibit better performances in terms of thermal efficiency andspecific fuel consumption than the traditional simple cycle engine.This research made use ofpublic domain open source references.
文摘This paper considers comparative assessment of simple and advanced cycle small-scale aero-derivative industrial gas turbines derived from helicopter engines.More particularly,investigation was made of technical performance of the small-scale aero-derivative engine cycles based on existing and projected cycles for applications in industrial power generation,combined heat and power concept,rotating equipment driving,and/or allied processes.The investigation was done by carrying out preliminary design and performance simulation of a simple cycle(baseline)two-spool small-scale aero-derivative turboshaft engine model,and some advanced counterpart aero-derivative configurations.The advanced configurations consist of recuperated and intercooled/recuperated engine cycles of same nominal power rating of 1.567 MW.The baseline model was derived from the conversion of an existing helicopter engine model.In doing so,design point and off-design point performances of the engine models were established.In comparing their performances,it was observed that to a large extent,the advanced engine cycles showed superior performance in terms of thermal efficiency,and specific fuel consumption.In numerical terms,thermal efficiencies of recuperated engine cycle,and intercooled/recuperated engine cycles,over the simple cycle at DP increased by 13.5%,and 14.5%respectively,whereas specific fuel consumption of these cycles over simple cycle at DP decreased by 12.5%,and 13%respectively.This research relied on open access public literature for data.
文摘Current study deals with performance evaluation of the solar power tower driven recompression with main com-pressor intercooling(RMCIC)supercritical CO_(2)cycle incorporating the parallel double evaporator organic Rank-ine cycle(PDORC)as bottoming cycle using low global warming potential fluids to reduce the global warming and ozone depletion.Using the PDORC instead of the basic organic Rankine cycle,waste heat from the intercooler and cycle exhaust were recovered simultaneously to enhance performance of the standalone RMCIC cycle.Exergy,thermal efficiency,efficiency improvement and waste recovery ratio were considered as performance parameters.A computer program was made in engineering equation solver to simulate the model.It was concluded that by the incorporation of the PDORC thermal efficiency was improved by 7-8%at reference conditions.Maximum combined cycle’s thermal and exergy efficiency were found 54.42%and 80.39%respectively of 0.95 kW/m^(2)of solar irradiation based on R1243zf working fluid.Among the results it was also found that maximum waste heat was recovered by the R1243zf about 54.22%at 0.95 effectiveness of low temperature recuperator.
文摘The performance of a marine gas turbine intercooler operating in wet condition was evaluated.The intercooler was a cross-flow plate-fin heat exchanger that used air and pure water as its working fluids at the hot and cold sides,respectively.The heat transfer performance and the water vapor condensation were investigated for a relative humidity of the inlet air that reached 100% during warship cruise.The condensation of the water vapors increased the hot side outlet temperature by a certain amount,which could in turn influence the performance of the compressor downstream.The condensate film thickness and the void fraction were calculated based on an annular two-phase flow model.It is found that water vapor condensation in hot flow channel increases the outlet temperature with a maximum value of 7.3℃ in the case of 100% relative humidity.The calculated liquid film thickness reaches a maximum value of 4μm,which indicates negligible thermal resistance to heat transfer.The results of liquid film thicknesses also provide a qualitative prediction of the diameter distribution of the condensate water droplets.