期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of Silicon Content and Intercritical Annealing on Manganese Partitioning in Dual Phase Steels 被引量:21
1
作者 A Nouri H Saghafian Sh Kheirandish 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2010年第5期44-50,共7页
Steels of constant manganese and carbon contents with silicon content of 0.34 %- 2.26% were cast. The as-cast steels were then hot rolled at 1 100 ℃ in five passes to reduce the cast ingot thickness from 80 to 4 mm, ... Steels of constant manganese and carbon contents with silicon content of 0.34 %- 2.26% were cast. The as-cast steels were then hot rolled at 1 100 ℃ in five passes to reduce the cast ingot thickness from 80 to 4 mm, air cooled to room temperature and cold rolled to 2 mm in thickness. Dual phase microstructures with different volume fraction of martensite were obtained through the intercritical annealing of the steels at different temperatures for 15 min followed by water quenching. In addition to intercritical annealing temperature, silicon content also altered the volume fraction of martensite in dual phase steels. The partitioning of manganese in dual phase silicon steels was investigated using energy-dispersive spectrometer (EDS). The partitioning coefficient, defined as the ratio of the amounts of alloying element in the austenite to that in the adjacent ferrite, for manganese increased with increasing intercritieal annealing temperature and silicon content of steels. It was also found that the solubility of manganese in ferrite and austenite decreased with increasing intereritical temperature. The results were discussed by the diffusivity and the solubility of manganese in ferrite and austenite existed in dual phase silicon steels. 展开更多
关键词 partitioning dual phase steel intercritical annealing temperature SILICON MANGANESE
原文传递
Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy:The effects of intercritical annealing temperature and constituent hardness 被引量:2
2
作者 Yan Chong Tilak Bhattacharjee +2 位作者 Yanzhong Tian Akinobu Shibata Nobuhiro Tsuji 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第12期138-151,共14页
The so-called bimodal microstructure of Ti-6 Al-4 V alloy,composed of primaryαgrains(α_(p))and transformed β areas(β_(trans)),can be regarded as a"dual-phase"structure to some extent,the mechanical prope... The so-called bimodal microstructure of Ti-6 Al-4 V alloy,composed of primaryαgrains(α_(p))and transformed β areas(β_(trans)),can be regarded as a"dual-phase"structure to some extent,the mechanical properties of which are closely related to the sizes,volume fractions,distributions as well as nanohardness of the two constituents.In this study,the volume fractions of primaryαgrains(vol.%(α_(p)))were systematically modified in three series of bimodal microstructures with fixed primaryαgrain sizes(0.8μm,2.4μm and 5.0μm),by changing the intercritical annealing temperature(T_(int)).By evaluating the tensile properties at room temperature,it was found that with increasing T_(int)(decreasing vol.%(α_(p))),the yield strength of bimodal microstructures monotonically increased,while the uniform elongation firstly increased with T_(int)until 910°C and then drastically decreased afterwards,thereby dividing the T_(int)into two regions,namely region I(830-910°C)and region II(910-970℃).The detailed deformation behaviors within the two regions were studied and compared,from the perspectives of strain distribution analysis,slip system analysis as well as dislocation analysis.For bimodal microstructures in region I,due to the much lower nano-hardness ofβ_(trans)thanα_(p),there was a clear strain partitioning between the two constituents as well as a strain gradient from theα_(p)/β_(trans)interface to the grain interior ofα_(p).This activated a large number of geometrically necessary dislocations(GNDs)near the interface,mostly with components,which contributed greatly to the extraordinary work-hardening abilities of bimodal microstructures in region I.With increasing T_(int),theα_(p)/β_(trans)interface length density gradually increased and so was the density of GNDs with components,which explained the continuous increase of uniform elongation with T_(int)in this region.For bimodal microstructures in region II,where the nano-hardness ofβ_(trans)andα_(p)were comparable,neither a clear strain-partitioning tendency nor a strain gradient across theα_(p)/β_(trans)interface was observed.Consequently,only statistically stored dislocations(SSDs)with component were activated insideα_(p).The absence of dislocations together with a decreased volume fraction ofα_(p)resulted into a dramatic loss of uniform elongation for bimodal microstructures in region II. 展开更多
关键词 TI-6AL-4V Bimodal microstructure intercritical annealing temperature Strain distribution DISLOCATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部