The Cl2-sensitive heteropolysiloxanes(HPS) film was formed on the interdigital capacitor based on silicon dioxide by means of sol-gel process and spin-on technique.Measurements of interdigital capacitance were perform...The Cl2-sensitive heteropolysiloxanes(HPS) film was formed on the interdigital capacitor based on silicon dioxide by means of sol-gel process and spin-on technique.Measurements of interdigital capacitance were performed at room temperature for frequencies 100 Hz,1 kHz and 10 kHz.It is shown that there is a linear relationship between the capacitance and the concentration of chlorine gas.Influences of the measurement frequency and film thickness of silicate on the sensitivity of the sensor to C12 gas were discussed.And organically modified N,N-diethylaminopropyl-trimethoxysilane (APMS) had a much higher sensitivity.展开更多
The n-type silicon integrated-back contact(IBC) solar cell has attracted much attention due to its high efficiency,whereas its performance is very sensitive to the wafer of low quality or the contamination during hi...The n-type silicon integrated-back contact(IBC) solar cell has attracted much attention due to its high efficiency,whereas its performance is very sensitive to the wafer of low quality or the contamination during high temperature fabrication processing, which leads to low bulk lifetime τbulk. In order to clarify the influence of bulk lifetime on cell characteristics, two-dimensional(2D) TCAD simulation, combined with our experimental data, is used to simulate the cell performances, with the wafer thickness scaled down under various τbulk conditions. The modeling results show that for the IBC solar cell with high τbulk,(such as 1 ms-2 ms), its open-circuit voltage V oc almost remains unchanged, and the short-circuit current density J sc monotonically decreases as the wafer thickness scales down. In comparison, for the solar cell with low τbulk(for instance, 〈 500 μs) wafer or the wafer contaminated during device processing, the V oc increases monotonically but the J sc first increases to a maximum value and then drops off as the wafer's thickness decreases. A model combing the light absorption and the minority carrier diffusion is used to explain this phenomenon. The research results show that for the wafer with thinner thickness and high bulk lifetime, the good light trapping technology must be developed to offset the decrease in J sc.展开更多
Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stab...Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer.展开更多
Lamb waves are used to detect fouling in food vessels. The propagation of the Lamb waves in plates exhibits many modes and dispersion characteristics, which have great influence on fouling detection. The relative dist...Lamb waves are used to detect fouling in food vessels. The propagation of the Lamb waves in plates exhibits many modes and dispersion characteristics, which have great influence on fouling detection. The relative distribution of the in-plane and out-of-plane displacement of the mode across the thickness of the plate will determine the sensitivity of the mode to a particular loading condition. By considering the dispersion and multi-mode characteristics of guided waves, an interdigital polyvi- nylidene fluoride (PVDF) transducer is designed to realize the mode selection of gnided waves, and a single a0 mode is used for guided wave detection. Fouling detection experiments are conducted in the laboratory using epoxy adhesive on a thin plate. Using the interdigital PVDF transducer, three fouled areas are detected. Using one of the time-frequency analysis methods, the waveforms are further processed. This also demonstrates the validity of this method of fouling detection.展开更多
Currently,the increasing demands for portable,implantable,and wearable electronics have triggered the interest in miniaturized energy storage devices.Different from conventional energy storage devices,interdigital mic...Currently,the increasing demands for portable,implantable,and wearable electronics have triggered the interest in miniaturized energy storage devices.Different from conventional energy storage devices,interdigital microbatteries(IMBs) are free of separators and prepared on a single substrate,potentially achieving a short ionic diffusion path and better performance.Meanwhile,they can be easily fabricated and integrated into on-chip miniaturized electronics,holding the promise to provide long-lasting power for advanced microelectronic devices.To date,while many seminal works have been reviewed the topic of microbatteries,there is no work that systematically summarizes the development of IMBs of high energy density and stable voltage platforms from fabrication,functionalization to integration.The current review focuses on the most recent progress in IMBs,discussing advanced micromachining techniques with compatible features to construct high-performance IMBs with smart functions and intelligent integrated systems.The future opportunities and challenges of IMBs are also highlighted,calling for more efforts in this dynamic and fast-growing research field.展开更多
文摘The Cl2-sensitive heteropolysiloxanes(HPS) film was formed on the interdigital capacitor based on silicon dioxide by means of sol-gel process and spin-on technique.Measurements of interdigital capacitance were performed at room temperature for frequencies 100 Hz,1 kHz and 10 kHz.It is shown that there is a linear relationship between the capacitance and the concentration of chlorine gas.Influences of the measurement frequency and film thickness of silicate on the sensitivity of the sensor to C12 gas were discussed.And organically modified N,N-diethylaminopropyl-trimethoxysilane (APMS) had a much higher sensitivity.
基金Project supported by the Chinese Ministry of Science and Technology Projects(Grant Nos.2012AA050304 and Y0GZ124S01)the National Natural Science Foundation of China(Grant Nos.11104319,11274346,51202285,51402347,and 51172268)the Fund of the Solar Energy Action Plan from the Chinese Academy of Sciences(Grant Nos.Y3ZR044001 and Y2YF014001)
文摘The n-type silicon integrated-back contact(IBC) solar cell has attracted much attention due to its high efficiency,whereas its performance is very sensitive to the wafer of low quality or the contamination during high temperature fabrication processing, which leads to low bulk lifetime τbulk. In order to clarify the influence of bulk lifetime on cell characteristics, two-dimensional(2D) TCAD simulation, combined with our experimental data, is used to simulate the cell performances, with the wafer thickness scaled down under various τbulk conditions. The modeling results show that for the IBC solar cell with high τbulk,(such as 1 ms-2 ms), its open-circuit voltage V oc almost remains unchanged, and the short-circuit current density J sc monotonically decreases as the wafer thickness scales down. In comparison, for the solar cell with low τbulk(for instance, 〈 500 μs) wafer or the wafer contaminated during device processing, the V oc increases monotonically but the J sc first increases to a maximum value and then drops off as the wafer's thickness decreases. A model combing the light absorption and the minority carrier diffusion is used to explain this phenomenon. The research results show that for the wafer with thinner thickness and high bulk lifetime, the good light trapping technology must be developed to offset the decrease in J sc.
基金supported in part by the National Natural Science Foundation of China(Grant No.62104056)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ21F010010)+4 种基金the National Natural Science Foundation of China(Grant Nos.62141409 and 62204204)the National Key R&D Program of China(Grant No.2022ZD0208602)the Zhejiang Provincial Key Research&Development Fund(Grant Nos.2019C04003 and 2021C01041)the Shanghai Sailing Program(Grant No.21YF1451000)the Key Research and Development Program of Shaanxi(Grant No.2022GY-001).
文摘Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer.
基金This project is supported by National Natural Science Foundation of China (No. 60404017)Municipal Natural Science Foundation of Beijing, China (No.4052008)Plan of Excellent People Cultivation of Beijing, China (No. 20051D0501506)
文摘Lamb waves are used to detect fouling in food vessels. The propagation of the Lamb waves in plates exhibits many modes and dispersion characteristics, which have great influence on fouling detection. The relative distribution of the in-plane and out-of-plane displacement of the mode across the thickness of the plate will determine the sensitivity of the mode to a particular loading condition. By considering the dispersion and multi-mode characteristics of guided waves, an interdigital polyvi- nylidene fluoride (PVDF) transducer is designed to realize the mode selection of gnided waves, and a single a0 mode is used for guided wave detection. Fouling detection experiments are conducted in the laboratory using epoxy adhesive on a thin plate. Using the interdigital PVDF transducer, three fouled areas are detected. Using one of the time-frequency analysis methods, the waveforms are further processed. This also demonstrates the validity of this method of fouling detection.
基金financial support from the National Natural Science Foundation of China(NSFC)(22109009)the China Postdoctoral Science Foundation(2020M680376)+2 种基金the National Key R&D Program of China(2017YFB1104300)the NSFC(21975027,22035005,52073159)the NSFC-STINT(21911530143)。
文摘Currently,the increasing demands for portable,implantable,and wearable electronics have triggered the interest in miniaturized energy storage devices.Different from conventional energy storage devices,interdigital microbatteries(IMBs) are free of separators and prepared on a single substrate,potentially achieving a short ionic diffusion path and better performance.Meanwhile,they can be easily fabricated and integrated into on-chip miniaturized electronics,holding the promise to provide long-lasting power for advanced microelectronic devices.To date,while many seminal works have been reviewed the topic of microbatteries,there is no work that systematically summarizes the development of IMBs of high energy density and stable voltage platforms from fabrication,functionalization to integration.The current review focuses on the most recent progress in IMBs,discussing advanced micromachining techniques with compatible features to construct high-performance IMBs with smart functions and intelligent integrated systems.The future opportunities and challenges of IMBs are also highlighted,calling for more efforts in this dynamic and fast-growing research field.