A hydromechanical interface element is proposed for the consideration of the hydraulic-mechanical coupling effect along the interface.The fully coupled governing equations and the relevant finite element formulations ...A hydromechanical interface element is proposed for the consideration of the hydraulic-mechanical coupling effect along the interface.The fully coupled governing equations and the relevant finite element formulations are derived in detail for the interface element.All the involved matrices are of the same form as those of a solid element,which makes the incorporation of the model into a finite element program straightforward.Three examples are then numerically simulated using the interface element.Reasonable results confirm the correctness of the proposed model and motivate its application in hydromechanical contact problems in the future.展开更多
A simple interface element for analyzing contact friction problems is developed. Taking nodal displacements and contact stresses as unknowns, this element can simulate frictional slippage, decoupling and re-bonding of...A simple interface element for analyzing contact friction problems is developed. Taking nodal displacements and contact stresses as unknowns, this element can simulate frictional slippage, decoupling and re-bonding of two bodies initially mating or having gaps at a common interface. The method is based on the Finite Element Method and load incremental theory. The geometric and static constraint conditions on contact surfaces are treated as additional conditions and are included in stiffness equations. This simple element has the advantages of easy implementation into standard finite element programs and fast speed for convergence as well as high accuracy for stress distribution in interface. Undesirable stress oscillations are also investigated whenever large stress gradients exist over the contact surfaces. Exact integration or the conventional Gauss integration scheme used to evaluate the interpolation function matrix of the interface element is found to be the source of the oscillations. Eigenmode analysis demonstrates that the stress behavior of an interface element can be improved by using the Newton-Cotes integration scheme. Finally, the test example of a strip footing problem is presented.展开更多
A second order isoparametric finite element method (IPFEM) is proposed for elliptic interface problems. It yields better accuracy than some existing second-order methods, when the coefficients or the flux across the...A second order isoparametric finite element method (IPFEM) is proposed for elliptic interface problems. It yields better accuracy than some existing second-order methods, when the coefficients or the flux across the immersed curved interface is discontinuous. Based on an initial Cartesian mesh, a mesh optimization strategy is presented by employing curved boundary elements at the interface, and an incomplete quadratic finite element space is constructed on the optimized mesh. It turns out that the number of curved boundary elements is far less than that of the straight one, and the total degree of freedom is almost the same as the uniform Cartesian mesh. Numerical examples with simple and complicated geometrical interfaces demonstrate the efficiency of the proposed method.展开更多
In this paper,stress distribution is obtained by employing the interface element to simulate the interphase feature between fiber-matrix in single-ply laminar which consists of fiber arranged periodically in the x-axi...In this paper,stress distribution is obtained by employing the interface element to simulate the interphase feature between fiber-matrix in single-ply laminar which consists of fiber arranged periodically in the x-axis direction and matrix,and which is subjected to far-field transverse load the contour of stress σsz and radial stress σr in the vicinity of interphase are plotted for three different interphase cases.It is made known that the effect of interphase properties in stress distribution is obvious.展开更多
In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body...In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body-fitted meshes are used.For homogeneous jump conditions,both non-conforming and conforming basis functions are constructed in such a way that they satisfy the natural jump conditions. For non-homogeneous jump conditions,a pair of functions that satisfy the same non-homogeneous jump conditions are constructed using a level-set representation of the interface.With such a pair of functions,the discontinuities across the interface in the solution and flux are removed;and an equivalent elasticity interface problem with homogeneous jump conditions is formulated.Numerical examples are presented to demonstrate that such methods have second order convergence.展开更多
Due to the complexity of soil-structure interaction, simple constitutive models typically used for interface elements in general computer programs cannot satisfy the requirements of discontinuous deformation analysis ...Due to the complexity of soil-structure interaction, simple constitutive models typically used for interface elements in general computer programs cannot satisfy the requirements of discontinuous deformation analysis of structures that contain different interfaces. In order to simulate the strain-softening characteristics of interfaces, a nonlinear strain-softening interface constitutive model was incorporated into fast Lagrange analysis of continua in three dimensions (FLAC3D) through a user-defined program in the FISH environment. A numerical simulation of a direct shear test for geosynthetic interfaces was conducted to verify that the interface model was implemented correctly. Results of the numerical tests show good agreement with the results obtained from theoretical calculations, indicating that the model incorporated into FLAC3D can simulate the nonlinear strain-softening behavior of interfaces involving geosynthetic materials. The results confirmed the validity and reliability of the improved interface model. The procedure and method of implementing an interface constitutive model into a commercial computer program also provide a reference for implementation of a new interface constitutive model in FLAC3D.展开更多
Ships and automobiles are fabricated front thin plates. To assemble parts, welding is commonly employed. However, welding distortion in large thin-plate panel structure is usually cased by buckling due to the residual...Ships and automobiles are fabricated front thin plates. To assemble parts, welding is commonly employed. However, welding distortion in large thin-plate panel structure is usually cased by buckling due to the residual stress. In this study, an elastic finite element method for predicting the welding distortion of three-dimensional thin-plate structures with considering welding sequence was proposed. In this method, the inherent strain was employed to model the local shrinkage due to welding itself, and the interface element was introduced to simulate the assembly process. The proposed method was applied to study the influence of welding sequence on the buckling distortion of the large thin-plate panel structure during assembly.展开更多
The effects of stabilizing piles on the stability of an embankment slope are analyzed by numerical simulation. The shear strength reduction method is used for the analysis, and the soil - pile interaction is simulated...The effects of stabilizing piles on the stability of an embankment slope are analyzed by numerical simulation. The shear strength reduction method is used for the analysis, and the soil - pile interaction is simulated with zero-thickness elasto-plastic interface elements. Effects of pile spacing and pile position on the safety factor of slope and the behavior of piles under these conditions are given. The numerical analysis indicates that the positions of the pile have significant influence on the stability of the slope, and the pile needs to be installed in the middle of the slope for maximum safety factors. In the end, the soil arching effect closely associated with the space between stabilizing piles is analyzed. The results are helpful for design and construction of stabilizing piles.展开更多
This study presents earthquake performance analysis of the Torul Concrete-Faced Rockfill (CFR) Dam with two-dimensional dam-soil and dam-soil-reservoir finite element models. The Lagrangian approach was used with fl...This study presents earthquake performance analysis of the Torul Concrete-Faced Rockfill (CFR) Dam with two-dimensional dam-soil and dam-soil-reservoir finite element models. The Lagrangian approach was used with fluid elements to model impounded water. The interface elements were used to simulate the slippage between the concrete face slab and the rockfill. The horizontal component of the 1992 Erzincan earthquake, with a peak ground acceleration of 0.515g, was considered in time-history analysis. The Drucker-Prager model was preferred in nonlinear analysis of the concrete slab, rockfill and foundation soil. The maximum principal stresses and the maximum displacements in two opposite directions were compared by the height of the concrete slab according to linear time-history analysis to reveal the effect of reservoir water. The changes of critical displacements and principal stresses with time are also shown in this paper. According to linear and nonlinear time-history analysis, the effect of the reservoir water on the earthquake performance of the Torul CFR Dam was investigated and the possible damage situation was examined. The results show that the hydrodynamic pressure of reservoir water leads to an increase in the maximum displacements and principal stresses of the dam and reduces the earthquake performance of the dam. Although the linear time-history analysis demonstrates that the earthquake causes a momentous damage to the concrete slab of the Torul CFR Dam, the nonlinear time-history analysis shows that no evident damage occurs in either reservoir case.展开更多
The rigid body limit equilibrium method (LEM) and the nonlinear finite element method (NFEM) are often used in the analysis of anti-sliding stability of gravity dam. But LEM cannot reflect the process of progressi...The rigid body limit equilibrium method (LEM) and the nonlinear finite element method (NFEM) are often used in the analysis of anti-sliding stability of gravity dam. But LEM cannot reflect the process of progressive instability and mechanical mecha- nism on failure for rock mass while NFEM is difficult to use to solve the displacement discontinuity of weak structural plane. Combining the research with Xiangjiaba Hydropower Station project, the analysis of anti-sliding stability for segment 12# of the dam has been carried out using interface stress element method (ISEM). The results can reflect the most dangerous location, the scope and distribution of failure zone in weak structural plane, and present the process of progressive failure in dam foun- dation as well as the safety coefficient of possible sliding body. These achievements provide an important technical reference for dam foundation treatment measures. The computational results show that ISEM can naturally describe discontinuous de- formation of rock mass such as dislocation, openness and sliding. Besides, this method is characterized by good adaptability, convenient calculation and high compatibility, thus it is regarded as an effective way to make an analysis of anti-sliding stabil- ity of gravity dam展开更多
In this paper,the electromagnetic scattering from overfilled cavities with inhomogeneous anisotropic media is investigated.To solve the scattering problem,a Petrov-Galerkin finite element interfacemethod on non-body-f...In this paper,the electromagnetic scattering from overfilled cavities with inhomogeneous anisotropic media is investigated.To solve the scattering problem,a Petrov-Galerkin finite element interfacemethod on non-body-fitted grids is presented.We reduce the infinite domain of scattering to a bounded domain problem by introducing a transparent boundary condition.The level set function is used to capture complex boundary and interface geometry that is not aligned with the mesh.Nonbody-fitted grids allow us to save computational costs during mesh generation and significantly reduce the amount of computer memory required.The solution is built by connecting two linear polynomials across the interfaces to satisfy the jump conditions.The proposed method can handle matrix coefficients produced by permittivity and permeability tensors of anisotropic media.The final linear system is sparse,making it more suitable for most iterative methods.Numerical experiments show that the proposed method has good convergence and realizability.Meanwhile,we discover that the absorbing properties of anisotropic media clearly and positively influence the reduction of radar cross section.It has also been demonstrated that the method can achieve second-order accuracy.展开更多
In simulations of geotechnical engineering, interface elements are versatile tools and are widely used in the modeling of the relative displacements between soils and structures. To consider the case of a local failur...In simulations of geotechnical engineering, interface elements are versatile tools and are widely used in the modeling of the relative displacements between soils and structures. To consider the case of a local failure adjacent to a soil-structure interaction region, a partial mesh refinement should be performed. In this study, a three-dimensional(3 D) interface element with an arbitrary number of nodes is developed as a new technique to reduce the complexity and difficulty of managing the various scales between soil and structure. An asymmetric number of nodes is permissible on the two sliding surfaces. In this manner, soil and structure can be discretized independently, and the various-scale model is established conveniently and rapidly. The accuracy of the proposed method is demonstrated through numerical examples. The various-scale approach is employed in an elasto-plastic seismic damage analysis of a buried concrete drainage culvert of a nuclear power plant. The results indicate that by applying the proposed method, the number of elements decreased by 72.5%, and the computational efficiency improved by 59% with little influence on accuracy. The proposed method is powerful for local damage evolution analyses of both soil and structure and possesses great practical significance and the potential for further application, especially for nonlinear analysis of large-scale geotechnical engineering.展开更多
A continuum damage mechanics (CDM) meso-model was derived for both intraply and interply progressive failure behaviors of a 2D woven-fabric composite laminate under a transversely low velocity impact.An in-plane aniso...A continuum damage mechanics (CDM) meso-model was derived for both intraply and interply progressive failure behaviors of a 2D woven-fabric composite laminate under a transversely low velocity impact.An in-plane anisotropic damage constitutive model of a 2D woven composite ply was derived based on CDM within a thermodynamic framework,an elastic constitutive model with damage for the fibre directions and an elastic-plastic constitutive model with damage for the shear direction.The progressive failure behavior of a 2D woven composite ply is determined by the damage internal variables in different directions with appropriate damage evolution equations.The interface between two adjacent 2D woven composite plies with different ply orientations was modeled by a traction-separation law based interface element.An isotropic damage constitutive law with CDM properties was used for the interface element,and a damage surface which combines stress and fracture mechanics failure criteria was employed to derive the damage initiation and evolution for the mixed-mode delamination of the interface elements.Numerical analysis and experiments were both carried out on a 2D woven glass fibre/epoxy laminate.The simulation results are in agreement with the experimental counterparts,verifying the progressive failure model of a woven composite laminate.The proposed model will enhance the understanding of dynamic deformation and progressive failure behavior of composite laminate structures in the low velocity impact process.展开更多
It is a common method to strengthen the damaged RC structures with bonded steel plates. At present the ultimate bearing ca- pacity of RC structures strengthened with bonded steel plates is calculated mostly using the ...It is a common method to strengthen the damaged RC structures with bonded steel plates. At present the ultimate bearing ca- pacity of RC structures strengthened with bonded steel plates is calculated mostly using the theory based on the test. Four beams, including one reference beam, two strengthened concrete beams in primary force and secondary force respectively, and one strengthened concrete beam which was not anchored enough, were tested under four-point bending (4PB) in order to get the data of strain of longitudinal bars, bonded bottom steel plate in tension and deflection of beams in the middle span. The experimental program was supported by a three-dimensioned finite analysis using ABAQUS. At the end of experiments and finite analysis, it is concluded that the investing strengthening technique can significantly improve the load-carrying capacity and the phenomenon of stress concentration at the end of interface, as well as the damage at interface, can be well simulated with cohesive element provided by ABAQUS.展开更多
基金supported by the Innovation Plan for Postgraduate Students sponsored by the Education Department of Jiangsu Province,China (CX08B 107Z)
文摘A hydromechanical interface element is proposed for the consideration of the hydraulic-mechanical coupling effect along the interface.The fully coupled governing equations and the relevant finite element formulations are derived in detail for the interface element.All the involved matrices are of the same form as those of a solid element,which makes the incorporation of the model into a finite element program straightforward.Three examples are then numerically simulated using the interface element.Reasonable results confirm the correctness of the proposed model and motivate its application in hydromechanical contact problems in the future.
文摘A simple interface element for analyzing contact friction problems is developed. Taking nodal displacements and contact stresses as unknowns, this element can simulate frictional slippage, decoupling and re-bonding of two bodies initially mating or having gaps at a common interface. The method is based on the Finite Element Method and load incremental theory. The geometric and static constraint conditions on contact surfaces are treated as additional conditions and are included in stiffness equations. This simple element has the advantages of easy implementation into standard finite element programs and fast speed for convergence as well as high accuracy for stress distribution in interface. Undesirable stress oscillations are also investigated whenever large stress gradients exist over the contact surfaces. Exact integration or the conventional Gauss integration scheme used to evaluate the interpolation function matrix of the interface element is found to be the source of the oscillations. Eigenmode analysis demonstrates that the stress behavior of an interface element can be improved by using the Newton-Cotes integration scheme. Finally, the test example of a strip footing problem is presented.
基金Supported by the National Natural Science Foundation of China (11071216 and 11101361)
文摘A second order isoparametric finite element method (IPFEM) is proposed for elliptic interface problems. It yields better accuracy than some existing second-order methods, when the coefficients or the flux across the immersed curved interface is discontinuous. Based on an initial Cartesian mesh, a mesh optimization strategy is presented by employing curved boundary elements at the interface, and an incomplete quadratic finite element space is constructed on the optimized mesh. It turns out that the number of curved boundary elements is far less than that of the straight one, and the total degree of freedom is almost the same as the uniform Cartesian mesh. Numerical examples with simple and complicated geometrical interfaces demonstrate the efficiency of the proposed method.
文摘In this paper,stress distribution is obtained by employing the interface element to simulate the interphase feature between fiber-matrix in single-ply laminar which consists of fiber arranged periodically in the x-axis direction and matrix,and which is subjected to far-field transverse load the contour of stress σsz and radial stress σr in the vicinity of interphase are plotted for three different interphase cases.It is made known that the effect of interphase properties in stress distribution is obvious.
基金supported by the US ARO grants 49308-MA and 56349-MAthe US AFSOR grant FA9550-06-1-024+1 种基金he US NSF grant DMS-0911434the State Key Laboratory of Scientific and Engineering Computing of Chinese Academy of Sciences during a visit by Z.Li between July-August,2008.
文摘In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body-fitted meshes are used.For homogeneous jump conditions,both non-conforming and conforming basis functions are constructed in such a way that they satisfy the natural jump conditions. For non-homogeneous jump conditions,a pair of functions that satisfy the same non-homogeneous jump conditions are constructed using a level-set representation of the interface.With such a pair of functions,the discontinuities across the interface in the solution and flux are removed;and an equivalent elasticity interface problem with homogeneous jump conditions is formulated.Numerical examples are presented to demonstrate that such methods have second order convergence.
基金supported by the National Natural Science Foundation of China (Grant No.51079047)
文摘Due to the complexity of soil-structure interaction, simple constitutive models typically used for interface elements in general computer programs cannot satisfy the requirements of discontinuous deformation analysis of structures that contain different interfaces. In order to simulate the strain-softening characteristics of interfaces, a nonlinear strain-softening interface constitutive model was incorporated into fast Lagrange analysis of continua in three dimensions (FLAC3D) through a user-defined program in the FISH environment. A numerical simulation of a direct shear test for geosynthetic interfaces was conducted to verify that the interface model was implemented correctly. Results of the numerical tests show good agreement with the results obtained from theoretical calculations, indicating that the model incorporated into FLAC3D can simulate the nonlinear strain-softening behavior of interfaces involving geosynthetic materials. The results confirmed the validity and reliability of the improved interface model. The procedure and method of implementing an interface constitutive model into a commercial computer program also provide a reference for implementation of a new interface constitutive model in FLAC3D.
文摘Ships and automobiles are fabricated front thin plates. To assemble parts, welding is commonly employed. However, welding distortion in large thin-plate panel structure is usually cased by buckling due to the residual stress. In this study, an elastic finite element method for predicting the welding distortion of three-dimensional thin-plate structures with considering welding sequence was proposed. In this method, the inherent strain was employed to model the local shrinkage due to welding itself, and the interface element was introduced to simulate the assembly process. The proposed method was applied to study the influence of welding sequence on the buckling distortion of the large thin-plate panel structure during assembly.
基金Supported by Young Teacher Foundation of Tianjin University(No.5110104)
文摘The effects of stabilizing piles on the stability of an embankment slope are analyzed by numerical simulation. The shear strength reduction method is used for the analysis, and the soil - pile interaction is simulated with zero-thickness elasto-plastic interface elements. Effects of pile spacing and pile position on the safety factor of slope and the behavior of piles under these conditions are given. The numerical analysis indicates that the positions of the pile have significant influence on the stability of the slope, and the pile needs to be installed in the middle of the slope for maximum safety factors. In the end, the soil arching effect closely associated with the space between stabilizing piles is analyzed. The results are helpful for design and construction of stabilizing piles.
文摘This study presents earthquake performance analysis of the Torul Concrete-Faced Rockfill (CFR) Dam with two-dimensional dam-soil and dam-soil-reservoir finite element models. The Lagrangian approach was used with fluid elements to model impounded water. The interface elements were used to simulate the slippage between the concrete face slab and the rockfill. The horizontal component of the 1992 Erzincan earthquake, with a peak ground acceleration of 0.515g, was considered in time-history analysis. The Drucker-Prager model was preferred in nonlinear analysis of the concrete slab, rockfill and foundation soil. The maximum principal stresses and the maximum displacements in two opposite directions were compared by the height of the concrete slab according to linear time-history analysis to reveal the effect of reservoir water. The changes of critical displacements and principal stresses with time are also shown in this paper. According to linear and nonlinear time-history analysis, the effect of the reservoir water on the earthquake performance of the Torul CFR Dam was investigated and the possible damage situation was examined. The results show that the hydrodynamic pressure of reservoir water leads to an increase in the maximum displacements and principal stresses of the dam and reduces the earthquake performance of the dam. Although the linear time-history analysis demonstrates that the earthquake causes a momentous damage to the concrete slab of the Torul CFR Dam, the nonlinear time-history analysis shows that no evident damage occurs in either reservoir case.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51179064, 11132003 and 10972072)the National Science and Technology Supporting Plan (Grant No. 2008BAB29B03)
文摘The rigid body limit equilibrium method (LEM) and the nonlinear finite element method (NFEM) are often used in the analysis of anti-sliding stability of gravity dam. But LEM cannot reflect the process of progressive instability and mechanical mecha- nism on failure for rock mass while NFEM is difficult to use to solve the displacement discontinuity of weak structural plane. Combining the research with Xiangjiaba Hydropower Station project, the analysis of anti-sliding stability for segment 12# of the dam has been carried out using interface stress element method (ISEM). The results can reflect the most dangerous location, the scope and distribution of failure zone in weak structural plane, and present the process of progressive failure in dam foun- dation as well as the safety coefficient of possible sliding body. These achievements provide an important technical reference for dam foundation treatment measures. The computational results show that ISEM can naturally describe discontinuous de- formation of rock mass such as dislocation, openness and sliding. Besides, this method is characterized by good adaptability, convenient calculation and high compatibility, thus it is regarded as an effective way to make an analysis of anti-sliding stabil- ity of gravity dam
基金supported by the National Natural Science Foundation of China(No.12271159)the Natural Science Foundation of Hebei Province(No.A2020502003)+2 种基金the Fundamental Research Funds for the Central Universities(No.2021MS115)supported by the National Natural Science Foundation of China(No.12171482)the State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(No.PRP/DX-2307).
文摘In this paper,the electromagnetic scattering from overfilled cavities with inhomogeneous anisotropic media is investigated.To solve the scattering problem,a Petrov-Galerkin finite element interfacemethod on non-body-fitted grids is presented.We reduce the infinite domain of scattering to a bounded domain problem by introducing a transparent boundary condition.The level set function is used to capture complex boundary and interface geometry that is not aligned with the mesh.Nonbody-fitted grids allow us to save computational costs during mesh generation and significantly reduce the amount of computer memory required.The solution is built by connecting two linear polynomials across the interfaces to satisfy the jump conditions.The proposed method can handle matrix coefficients produced by permittivity and permeability tensors of anisotropic media.The final linear system is sparse,making it more suitable for most iterative methods.Numerical experiments show that the proposed method has good convergence and realizability.Meanwhile,we discover that the absorbing properties of anisotropic media clearly and positively influence the reduction of radar cross section.It has also been demonstrated that the method can achieve second-order accuracy.
基金supported by the National Key R&D Program of China(Grant No.2017YFC0404900)the National Natural Science Foundation of China(Grant Nos.51779034,51678113)the Fundamental Research Funds for the Central Universities(Grant No.DUT17ZD219)
文摘In simulations of geotechnical engineering, interface elements are versatile tools and are widely used in the modeling of the relative displacements between soils and structures. To consider the case of a local failure adjacent to a soil-structure interaction region, a partial mesh refinement should be performed. In this study, a three-dimensional(3 D) interface element with an arbitrary number of nodes is developed as a new technique to reduce the complexity and difficulty of managing the various scales between soil and structure. An asymmetric number of nodes is permissible on the two sliding surfaces. In this manner, soil and structure can be discretized independently, and the various-scale model is established conveniently and rapidly. The accuracy of the proposed method is demonstrated through numerical examples. The various-scale approach is employed in an elasto-plastic seismic damage analysis of a buried concrete drainage culvert of a nuclear power plant. The results indicate that by applying the proposed method, the number of elements decreased by 72.5%, and the computational efficiency improved by 59% with little influence on accuracy. The proposed method is powerful for local damage evolution analyses of both soil and structure and possesses great practical significance and the potential for further application, especially for nonlinear analysis of large-scale geotechnical engineering.
文摘A continuum damage mechanics (CDM) meso-model was derived for both intraply and interply progressive failure behaviors of a 2D woven-fabric composite laminate under a transversely low velocity impact.An in-plane anisotropic damage constitutive model of a 2D woven composite ply was derived based on CDM within a thermodynamic framework,an elastic constitutive model with damage for the fibre directions and an elastic-plastic constitutive model with damage for the shear direction.The progressive failure behavior of a 2D woven composite ply is determined by the damage internal variables in different directions with appropriate damage evolution equations.The interface between two adjacent 2D woven composite plies with different ply orientations was modeled by a traction-separation law based interface element.An isotropic damage constitutive law with CDM properties was used for the interface element,and a damage surface which combines stress and fracture mechanics failure criteria was employed to derive the damage initiation and evolution for the mixed-mode delamination of the interface elements.Numerical analysis and experiments were both carried out on a 2D woven glass fibre/epoxy laminate.The simulation results are in agreement with the experimental counterparts,verifying the progressive failure model of a woven composite laminate.The proposed model will enhance the understanding of dynamic deformation and progressive failure behavior of composite laminate structures in the low velocity impact process.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11132003, 11002048, 10972072)the Special Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering at Hohai University (Grant Nos. 2011585912, 2009585912)
文摘It is a common method to strengthen the damaged RC structures with bonded steel plates. At present the ultimate bearing ca- pacity of RC structures strengthened with bonded steel plates is calculated mostly using the theory based on the test. Four beams, including one reference beam, two strengthened concrete beams in primary force and secondary force respectively, and one strengthened concrete beam which was not anchored enough, were tested under four-point bending (4PB) in order to get the data of strain of longitudinal bars, bonded bottom steel plate in tension and deflection of beams in the middle span. The experimental program was supported by a three-dimensioned finite analysis using ABAQUS. At the end of experiments and finite analysis, it is concluded that the investing strengthening technique can significantly improve the load-carrying capacity and the phenomenon of stress concentration at the end of interface, as well as the damage at interface, can be well simulated with cohesive element provided by ABAQUS.