Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is mu...Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is much smaller than that of the solid–solid contact surface, but conventional solid–liquid phase change materials are likely to cause serious leakage. Therefore, this work has prepared a new formstable phase change thermal interface material. Through the melt blending of paraffin wax(PW) and low-density polyethylene(LDPE), the stability is improved and it has an excellent coating effect on PW. The addition of aluminum(Al) powder improves the low thermal conductivity of PW/LDPE, and the addition of 15wt% Al powder improves the thermal conductivity of the internal structure of the matrix by 67%. In addition, the influence of the addition of Al powder on the internal structure, thermal properties, and phase change behavior of the PW/LDPE matrix was systematically studied. The results confirmed that the addition of Al powder improved the thermal conductivity of the material without a significant impact on other properties, and the thermal conductivity increased with the increase of Al addition. Therefore, morphologically stable PW/LDPE/Al is an important development direction for TIMs.展开更多
Interface engineering is proved to be the most important strategy to push the device performance of the perovskite solar cell(PSC) to its limit, and numerous works have been conducted to screen efficient materials. He...Interface engineering is proved to be the most important strategy to push the device performance of the perovskite solar cell(PSC) to its limit, and numerous works have been conducted to screen efficient materials. Here, on the basis of the previous studies, we employ machine learning to map the relationship between the interface material and the device performance, leading to intelligently screening interface materials towards minimizing voltage losses in p-i-n type PSCs. To enhance the explainability of the machine learning models, molecular descriptors are used to represent the materials. Furthermore,experimental analysis with different characterization methods and device simulation based on the drift-diffusion physical model are conducted to get physical insights and validate the machine learning models. Accordingly, 3-thiophene ethylamine hydrochloride(Th EACl) is screened as an example, which enables remarkable improvements in VOCand PCE of the PSCs. Our work reveals the critical role of datadriven analysis in the high throughput screening of interface materials, which will significantly accelerate the exploration of new materials for high-efficiency PSCs.展开更多
Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of hi...Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices.Based on the ultra-high basal-plane thermal conductivity,graphene is an ideal candidate for preparing high-performance TIMs,preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM.However,the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory.In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved,another critical factor is the limited actual contact area leading to relatively high contact thermal resistance(20-30 K mm^(2) W^(−1))of the“solid-solid”mating interface formed by the vertical graphene and the rough chip/heat sink.To solve this common problem faced by vertically aligned graphene,in this work,we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces.Based on rational graphene orientation regulation in the middle tier,the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m^(−1) K^(−1).Additionally,we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a“liquid-solid”mating interface,significantly increasing the effective heat transfer area and giving a low contact thermal con-ductivity of 4-6 K mm^(2) W^(−1) under packaging conditions.This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management.展开更多
Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a...Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance.展开更多
Down to the road of miniaturization and high power density,the heat dissipation is becoming one of the critical factors restricting further development of advanced microelectronic devices.Traditional polymer-based the...Down to the road of miniaturization and high power density,the heat dissipation is becoming one of the critical factors restricting further development of advanced microelectronic devices.Traditional polymer-based thermal interface materials(TIMs) are not competitive for the high efficiency thermal management,mainly due to their low intrinsic thermal conductivity and high interface thermal resistance.Solder-based TIM is one of the best candidates for the next generation of thermal interface materials.This paper conducts a perspective review of the state of the art of solder TIM,including low melting alloy solder TIM,composite solder TIM and nanostructured solder TIM.The microstructure,process parameters,thermal performance and reliability of different TIMs are summarized and analyzed.The future trends of advanced TIMs are discussed.展开更多
High-performance thermal interface materials (TIMs) are highly sought after for modern electronics. Two-dimensional (2D) materials as vertical aligned fillers can optimize the out-plane thermal conductivity (k ⊥), bu...High-performance thermal interface materials (TIMs) are highly sought after for modern electronics. Two-dimensional (2D) materials as vertical aligned fillers can optimize the out-plane thermal conductivity (k ⊥), but their excessively high content or intrinsic rigidness deteriorate TIMs softness, leading to worsening for thermal contact resistance (R contact). In this study, 2D graphene materials are fabricated into lightweight and soft graphene foams (GFs) with high-orientation, acting as vertical filler frameworks to optimize the k ⊥ and R contact for vertical GF (VGF) TIMs. The VGF-TIM has a high k ⊥ of 47.9 W·m^(−1)·K^(−1) at a low graphene content of 15.5 wt.%. Due to the softness and low filler contents of GFs, the VGF-TIM exhibits a low compressive module (4.2 MPa), demonstrating excellent compressibility. The resulting TIM exhibit a low contact resistance of 24.4 K·mm2·W^(−1), demonstrating 185.1% higher cooling efficiency in practical heat dissipating scenario compared to commercial advanced TIMs. This work provides guidelines for the design of advanced TIMs and their applications in thermal management.展开更多
Effective thermal transport across solid-solid interfaces which is essential in thermal interface materials(TIMs),necessitates both optimal thixotropy and high thermal conductivity.The role of filler surface modificat...Effective thermal transport across solid-solid interfaces which is essential in thermal interface materials(TIMs),necessitates both optimal thixotropy and high thermal conductivity.The role of filler surface modification,a fundamental aspect of TIM fabrication,in the influence of these properties is not fully understood.This study employs the use of a silane coupling agent(SCA)to modify alumina,integrating experimental approaches with molecular dynamics simulations,to elucidate the interface effects on thixotropy and thermal conductivity in polydimethylsiloxane(PDMS)-based TIMs.Our findings reveal that the variations of SCAs modify both interface binding energy and transition layer thickness.The interface binding energy restricts macromolecular segmental relaxation near the interface,hindering desirable thixotropy and bond line thickness.On the contrary,the thickness of the transition layer at the interface positively influences thermal conductivity,facilitating the transport of phonons between the polymer and filler.Consequently,selecting an optimal SCA allows a balance between traditionally conflicting goals of high thermal conductivity and minimal bond line thickness,achieving an impressively low interface thermal resistance of just 2.45-4.29 K·mm^(2)·W^(-1)at275.8 kPa.展开更多
Silicone rubber(SR) composites are most widely used as thermal interface materials(TIMs) for electronics heat dissipation. Thermal impedance as the main bottleneck limiting the performance of TIMs is usually neglected...Silicone rubber(SR) composites are most widely used as thermal interface materials(TIMs) for electronics heat dissipation. Thermal impedance as the main bottleneck limiting the performance of TIMs is usually neglected. Herein, the thermal impedance of SR composites loaded with different levels of hexagonal boron nitride(h-BN) as TIMs was elaborated for the first time by the ASTM D 5470 standard test and finite element analysis. It was found that elastic modulus and surface roughness of SR composites increased with the increase of h-BN content, indicating that the conformity was reduced. When the assembly pressure was 0.69 MPa, there existed an optimal h-BN content at which the contact resistance was minimum(0.39 K·cm^(2)·W^(-1)). Although the decreased bond line thickness(BLT) by increasing the assembly pressure was beneficial to reduce the thermal impedance, the proper assembly pressure should be selected to prevent the warpage of the contact surfaces and the increase in contact resistance, according to the compression properties of the SR composites. This study provides valuable insights into fabrication of high-performance TIMs for modern electronic device applications.展开更多
Thermoelectric generators(TEGs)are renowned for powering deep space exploration due to their simple system structure,long-term stability,and vibration-less operation^([1-4]).However,the extensive commercial applicatio...Thermoelectric generators(TEGs)are renowned for powering deep space exploration due to their simple system structure,long-term stability,and vibration-less operation^([1-4]).However,the extensive commercial application of TEGs remains stagnant due to the challenges in designing reliable electrode contact inter-faces,especially the interface between thermoelectric interface materials(TEiMs)and thermoelectric conversion materials(TEcMs)^([5]).展开更多
The growing concern about thermal conductivityand electromagnetic shielding inelectronic equipment has promoted the development of interfacial film materials.In this work,polyvinylidene fluoride(PVDF)/graphene composi...The growing concern about thermal conductivityand electromagnetic shielding inelectronic equipment has promoted the development of interfacial film materials.In this work,polyvinylidene fluoride(PVDF)/graphene composite films with different graphene contents were fabricated by high-energy ball milling,cold isostatic pressing,scraping and coating,successively.High-energy ball milling is beneficial to the dispersion of graphene powder,while cold isostatic pressing can greatly enhance thermal conductivity and mechanical strength by reducing the voids in the film and increasing the contact area of graphene sheets.The thermal conductivity,tensile strength and electromagnetic shielding properties of the films were carefully investigated and compared.It was demonstrated that the thermal conductivity increased from 0.19 Wm-1.K-1 for pure PVDF to 103.9 W-m-1.K-1 for the composite film with PVDF:graphene=1:3.Meanwhile the electromagnetic shielding efficiency can reach 36.55 dB.The prepared PVDF/graphene composite films exhibit outstanding overall performance and have the potential for practical applications.展开更多
As electronic devices continue to evolve toward miniaturization and integration,traditional thermal interface materials(TIMs)are no longer able to meet the ever-tougher thermal management challenges.Owing to their hig...As electronic devices continue to evolve toward miniaturization and integration,traditional thermal interface materials(TIMs)are no longer able to meet the ever-tougher thermal management challenges.Owing to their high thermal conductivity and excellent conformability within a highly confined space,liquid metals have great potential for advanced thermal management in various cutting-edge devices and have become a key candidate for next-generation high-performance TIMs.In addition to already known materials,such as liquid metal alloy TIMs,particle-filled liquid metal TIMs,and liquid metal-filled TIMs,more TIMs are still being developed.This review presents a systematic classification of the liquid metal TIMs developed thus far,interprets the fundamental mechanisms underlying material innovation and in-situ heat transfer enhancement,and comparatively evaluates their respective advantages and shortcomings.Subsequently,a series of representative theoretical models for characterizing the thermal conductivities of composites are summarized,and the limits of the thermal conductivity of liquid metal TIMs are predicted to guide practical R&D efforts.To address the urgent need for higher-performance TIMs to overcome future thermal management challenges of electronic devices,a roadmap is outlined for the development of high-performance liquid metal TIMs,and a strategy for running these technologies is demonstrated.展开更多
Recent advances in neuroelectrode interface materials and modification technologies are reviewed. Brain-computer interface is the new method of human-computer interaction, which not only can realise the exchange of in...Recent advances in neuroelectrode interface materials and modification technologies are reviewed. Brain-computer interface is the new method of human-computer interaction, which not only can realise the exchange of information between the human brain and external devices, but also provides a brand-new means for the diagnosis and treatment of brain-related diseases. The neural electrode interface part of brain-computer interface is an important area for electrical, optical and chemical signal transmission between brain tissue system and external electronic devices, which determines the performance of brain-computer interface. In order to solve the problems of insufficient flexibility, insufficient signal recognition ability and insufficient biocompatibility of traditional rigid electrodes, researchers have carried out extensive studies on the neuroelectrode interface in terms of materials and modification techniques. This paper introduces the biological reactions that occur in neuroelectrodes after implantation into brain tissue and the decisive role of the electrode interface for electrode function. Following this, the latest research progress on neuroelectrode materials and interface materials is reviewed from the aspects of neuroelectrode materials and modification technologies, firstly taking materials as a clue, and then focusing on the preparation process of neuroelectrode coatings and the design scheme of functionalised structures.展开更多
Vertically aligned carbon nanotubes arrays(VACNTs)are a promising candidate for the thermal interface material(TIM)of next-generation electronic devices due to their attractive thermal and mechanical properties.Howeve...Vertically aligned carbon nanotubes arrays(VACNTs)are a promising candidate for the thermal interface material(TIM)of next-generation electronic devices due to their attractive thermal and mechanical properties.However,the environment required for synthesizing VACNTs is harsh and severely incompatible with standard device packaging processes.VACNTs’extremely low in-plane thermal conductivity also limits its performance for cooling hot spots.Here,using a transfer-and-encapsulate strategy,a two-step soldering method is developed to cap both ends of the VACNTs with copper microfoils,forming a standalone Cu-VACNTs-Cu sandwich TIM and avoiding the need to directly grow VACNTs on chip die.This new TIM is fully compatible with standard packaging,with excellent flexibility and high thermal conductivities in both in-plane and through-plane directions.The mechanical compliance behavior and mechanism,which are critical for TIM applications,are investigated in depth using in situ nanoindentation.The thermal performance is further verified in an actual light emitting diode(LED)cooling experiment,demonstrating low thermal resistance,good reliability,and achieving a 17℃ temperature reduction compared with state-of-the-art commercial TIMs.This study provides a viable solution to VACNTs’longstanding problem in device integration and free-end contact resistance,bringing it much closer to application and solving the critical thermal bottleneck in next-generation electronics.展开更多
The past years has observed a significantly boost of the thermoelectric materials in the scale of thermoelectric figure-of-merit,i.e.ZT,because of its promising application to harvest the widely distributed waste heat...The past years has observed a significantly boost of the thermoelectric materials in the scale of thermoelectric figure-of-merit,i.e.ZT,because of its promising application to harvest the widely distributed waste heat.However,the simplified thermoelectric materials'performance scale also shifted the focus of thermoelectric energy conversion technique from devices-related efforts to materials-level works.As a result,the thermoelectric devices-related works didn't get enough attention.The device-level challenges behind were kept unknown until recent years.However,besides the thermoelectric materials properties,the practical energy conversion efficiency and service life of thermoelectric device is highly determined by assembling process and the contact interface.In this perspective,we are trying to shine some light on the device-level challenge,and give a special focus on the thermoelectric interface materials(TEiM)between the thermoelectric elements and electrode,which is also known as the metallization layer or solder barrier layer.We will go through the technique concerns that determine the scope of the TEiM,including bonding strength,interfacial resistance and stability.Some general working principles are summarized before the discussion of some typical examples of searching proper TEiM for a given thermoelectric conversion material.展开更多
Thermal resistance of low-melting-temperature alloy (LMTA) thermal interface materials (TIMs) was measured by laser flash method before and after different stages of heating. The results showed that the thermal pe...Thermal resistance of low-melting-temperature alloy (LMTA) thermal interface materials (TIMs) was measured by laser flash method before and after different stages of heating. The results showed that the thermal performance of the LMTA TIMs was degraded during the heating process. It is suggested that the degradation may mainly be attributed to the interfacial reaction between the Cu and the molten LMTAs. Due to the fast growth rate of intermetallic compound (IMC) at the solid-liquid interface, a thick brittle IMC is layer formed at the interface, which makes cracks easy to initiate and expand. Otherwise, the losses of indium and tin contents in the LMTA during the interfacial reaction will make the melting point of the TIM layer increase, and so, the TIM layer will not melt at the operating temperature.展开更多
With the explosive development in integration of electronic components and the increasing complexity of packaging systems,semiconductor chips own extremely high operation temperatures given by the horrible heat accumu...With the explosive development in integration of electronic components and the increasing complexity of packaging systems,semiconductor chips own extremely high operation temperatures given by the horrible heat accumulation attributed to the drastically increasing power density. Therefore, highly efficient heat dissipation with the help of rationally designed thermal interface materials(TIMs) is the key to maintaining the device performance and lifespan. Graphene exhibits an ultrahigh intrinsic thermal conductivity, which has attracted a large amount of academic interest due to its significant potential for developing high-performance TIMs. In this tutorial review, we summarize the recent advances in graphene-based TIMs, especially emphasizing the determinate effects of graphene structure and alignment in enhancing the heat transfer capacity of corresponding samples,with detailed discussion in the superiorities and limitations of various graphene skeletons. In addition, we also provide prospects for the challenges and opportunities in the future development of graphene-based TIMs.展开更多
The emerging applications of composite gels as thermal interface ma-terials(TIMs)for chip heat dissipation in intelligent vehicle and wear-able devices require high thermal conductivity and remarkable damp-ing propert...The emerging applications of composite gels as thermal interface ma-terials(TIMs)for chip heat dissipation in intelligent vehicle and wear-able devices require high thermal conductivity and remarkable damp-ing properties.However,thermal conductivity and damping proper-ties are usually correlated and coupled each other.Here,inspired by Maxwell theory and adhesion mechanism of gecko’s setae,we present a strategy to fabricate polydimethylsiloxane-based composite gels in-tegrating high thermal conductivity and remarkable damping prop-erties over a broad frequency and temperature range.The multiple relaxation modes of dangling chains and the dynamic interaction be-tween the dangling chains and aluminum fillers can efficiently dis-sipate the vibration energy,endowing the composite gels with ultra-high damping property(tanδ>0.3)over a broad frequency(0.01-100 Hz)and temperature range(-50-150°C),which exceeds typi-cal state-of-the-art damping materials.The dangling chains also com-fort to the interfaces between polymer matrix and aluminum via van der Waals interaction,resulting in high thermal conductivity(4.72±0.04 W m-1 K-1).Using the polydimethylsiloxane-based composite gel as TIMs,we demonstrate effective heat dissipation in chip oper-ating under vigorous vibrations.We believe that our strategy could be applied to a wide range of composite gels and lead to the devel-opment of high-performance composite gels as TIMs for chip heat dissipation.展开更多
Imperfect bonding between the constitutive components can greatly affect the properties of the composite structures.An asymptotic analysis of different types of imperfect interfaces arising in the problem of 2D fibrer...Imperfect bonding between the constitutive components can greatly affect the properties of the composite structures.An asymptotic analysis of different types of imperfect interfaces arising in the problem of 2D fibrereinforced composite materials are proposed.The performed study is based on the asymptotic reduction of the governing biharmonic problem into two harmonic problems.All solutions are obtained in a closed analytical form.The obtained results can be used for the calculation of pull-out and pushout tests,as well as for the investigation of the fracture of composite materials.展开更多
Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer eff...Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.展开更多
基金supported by the National Natural Science Foundation of China, China (No. 51874047)the Key Science and Technology Project of Changsha City, China (No. kq2102005)+1 种基金the Special Fund for the Construction of Innovative Province in Hunan Province, China (No. 2020RC3038)the Changsha City Fund for Distinguished and Innovative Young Scholars, China (No. kq1802007)。
文摘Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is much smaller than that of the solid–solid contact surface, but conventional solid–liquid phase change materials are likely to cause serious leakage. Therefore, this work has prepared a new formstable phase change thermal interface material. Through the melt blending of paraffin wax(PW) and low-density polyethylene(LDPE), the stability is improved and it has an excellent coating effect on PW. The addition of aluminum(Al) powder improves the low thermal conductivity of PW/LDPE, and the addition of 15wt% Al powder improves the thermal conductivity of the internal structure of the matrix by 67%. In addition, the influence of the addition of Al powder on the internal structure, thermal properties, and phase change behavior of the PW/LDPE matrix was systematically studied. The results confirmed that the addition of Al powder improved the thermal conductivity of the material without a significant impact on other properties, and the thermal conductivity increased with the increase of Al addition. Therefore, morphologically stable PW/LDPE/Al is an important development direction for TIMs.
基金supported by the National Natural Science Foundation of China (62075006)the National Key R&D Program of China (2018YFB1500200)。
文摘Interface engineering is proved to be the most important strategy to push the device performance of the perovskite solar cell(PSC) to its limit, and numerous works have been conducted to screen efficient materials. Here, on the basis of the previous studies, we employ machine learning to map the relationship between the interface material and the device performance, leading to intelligently screening interface materials towards minimizing voltage losses in p-i-n type PSCs. To enhance the explainability of the machine learning models, molecular descriptors are used to represent the materials. Furthermore,experimental analysis with different characterization methods and device simulation based on the drift-diffusion physical model are conducted to get physical insights and validate the machine learning models. Accordingly, 3-thiophene ethylamine hydrochloride(Th EACl) is screened as an example, which enables remarkable improvements in VOCand PCE of the PSCs. Our work reveals the critical role of datadriven analysis in the high throughput screening of interface materials, which will significantly accelerate the exploration of new materials for high-efficiency PSCs.
基金flnancial support by the National Natural Science Foundation of China (52102055, 5227020331, 52075527)National Key R&D Program of China (2017YFB0406000 and 2017YFE0128600)+8 种基金the Project of the Chinese Academy of Sciences (XDC07030100, XDA22020602, ZDKYYQ20200001 and ZDRW-CN-2019-3)CAS Youth Innovation Promotion Association (2020301)Science and Technology Major Project of Ningbo (2021Z120, 2021Z115, 2022Z084, 2018B10046 and 2016S1002)the Natural Science Foundation of Ningbo (2017A610010)Foundation of State Key Laboratory of Solid lubrication (LSL-1912)China Postdoctoral Science Foundation (2020M681965, 2022M713243)National Key Laboratory of Science and Technology on Advanced Composites in Special Environments (6142905192806)K.C. Wong Education Foundation (GJTD-2019-13)the 3315 Program of Ningbo for financial support
文摘Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices.Based on the ultra-high basal-plane thermal conductivity,graphene is an ideal candidate for preparing high-performance TIMs,preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM.However,the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory.In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved,another critical factor is the limited actual contact area leading to relatively high contact thermal resistance(20-30 K mm^(2) W^(−1))of the“solid-solid”mating interface formed by the vertical graphene and the rough chip/heat sink.To solve this common problem faced by vertically aligned graphene,in this work,we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces.Based on rational graphene orientation regulation in the middle tier,the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m^(−1) K^(−1).Additionally,we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a“liquid-solid”mating interface,significantly increasing the effective heat transfer area and giving a low contact thermal con-ductivity of 4-6 K mm^(2) W^(−1) under packaging conditions.This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management.
基金supported by the Fundamental Research Funds for the Central Universities (FRF-BR-10-007A and FRF-AS-09-001A)the National Natural Science Foundation of China (10872104)
文摘Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance.
基金supported by the National Natural Science Foundation of China (Grant No. 51775299, 52075287)。
文摘Down to the road of miniaturization and high power density,the heat dissipation is becoming one of the critical factors restricting further development of advanced microelectronic devices.Traditional polymer-based thermal interface materials(TIMs) are not competitive for the high efficiency thermal management,mainly due to their low intrinsic thermal conductivity and high interface thermal resistance.Solder-based TIM is one of the best candidates for the next generation of thermal interface materials.This paper conducts a perspective review of the state of the art of solder TIM,including low melting alloy solder TIM,composite solder TIM and nanostructured solder TIM.The microstructure,process parameters,thermal performance and reliability of different TIMs are summarized and analyzed.The future trends of advanced TIMs are discussed.
基金financial support from the National Natural Science Foundation of China(No.22279097)the Key R&D Program of Hubei Province(No.2023BAB103)+1 种基金the Foundation of National Key Laboratory of Microwave Imaging Technology,the China Postdoctoral Science Foundation(No.2023M732723)the Fundamental Research Funds for the Central Universities(No.WUT: 2022IVA172).
文摘High-performance thermal interface materials (TIMs) are highly sought after for modern electronics. Two-dimensional (2D) materials as vertical aligned fillers can optimize the out-plane thermal conductivity (k ⊥), but their excessively high content or intrinsic rigidness deteriorate TIMs softness, leading to worsening for thermal contact resistance (R contact). In this study, 2D graphene materials are fabricated into lightweight and soft graphene foams (GFs) with high-orientation, acting as vertical filler frameworks to optimize the k ⊥ and R contact for vertical GF (VGF) TIMs. The VGF-TIM has a high k ⊥ of 47.9 W·m^(−1)·K^(−1) at a low graphene content of 15.5 wt.%. Due to the softness and low filler contents of GFs, the VGF-TIM exhibits a low compressive module (4.2 MPa), demonstrating excellent compressibility. The resulting TIM exhibit a low contact resistance of 24.4 K·mm2·W^(−1), demonstrating 185.1% higher cooling efficiency in practical heat dissipating scenario compared to commercial advanced TIMs. This work provides guidelines for the design of advanced TIMs and their applications in thermal management.
基金financially supported by the National Natural Science Foundation of China(Nos.52373042 and 52103091)the National Key Research and Development Project of China(No.2022YFB3806900)the International Visiting Program for Excellent Young Scholars of SCU。
文摘Effective thermal transport across solid-solid interfaces which is essential in thermal interface materials(TIMs),necessitates both optimal thixotropy and high thermal conductivity.The role of filler surface modification,a fundamental aspect of TIM fabrication,in the influence of these properties is not fully understood.This study employs the use of a silane coupling agent(SCA)to modify alumina,integrating experimental approaches with molecular dynamics simulations,to elucidate the interface effects on thixotropy and thermal conductivity in polydimethylsiloxane(PDMS)-based TIMs.Our findings reveal that the variations of SCAs modify both interface binding energy and transition layer thickness.The interface binding energy restricts macromolecular segmental relaxation near the interface,hindering desirable thixotropy and bond line thickness.On the contrary,the thickness of the transition layer at the interface positively influences thermal conductivity,facilitating the transport of phonons between the polymer and filler.Consequently,selecting an optimal SCA allows a balance between traditionally conflicting goals of high thermal conductivity and minimal bond line thickness,achieving an impressively low interface thermal resistance of just 2.45-4.29 K·mm^(2)·W^(-1)at275.8 kPa.
基金financially supported by Sichuan Science and Technology Program (No.2022YFH0090)the Fundamental Research Funds for the Central Universities。
文摘Silicone rubber(SR) composites are most widely used as thermal interface materials(TIMs) for electronics heat dissipation. Thermal impedance as the main bottleneck limiting the performance of TIMs is usually neglected. Herein, the thermal impedance of SR composites loaded with different levels of hexagonal boron nitride(h-BN) as TIMs was elaborated for the first time by the ASTM D 5470 standard test and finite element analysis. It was found that elastic modulus and surface roughness of SR composites increased with the increase of h-BN content, indicating that the conformity was reduced. When the assembly pressure was 0.69 MPa, there existed an optimal h-BN content at which the contact resistance was minimum(0.39 K·cm^(2)·W^(-1)). Although the decreased bond line thickness(BLT) by increasing the assembly pressure was beneficial to reduce the thermal impedance, the proper assembly pressure should be selected to prevent the warpage of the contact surfaces and the increase in contact resistance, according to the compression properties of the SR composites. This study provides valuable insights into fabrication of high-performance TIMs for modern electronic device applications.
基金the Shenzhen Key Projects of Long-Term Support Plan(No.20200925164021002)Guangdong Provincial Key Laboratory Program(No.2021B1212040001)from the Department of Science and Technology of Guangdong Province.
文摘Thermoelectric generators(TEGs)are renowned for powering deep space exploration due to their simple system structure,long-term stability,and vibration-less operation^([1-4]).However,the extensive commercial application of TEGs remains stagnant due to the challenges in designing reliable electrode contact inter-faces,especially the interface between thermoelectric interface materials(TEiMs)and thermoelectric conversion materials(TEcMs)^([5]).
基金This work was supported by the National Natural ScienceFoundationofChina(No.U22B2066,No.12064044)the Major Science and Technology Projects of Anhui Province(No.202103a05020016)+1 种基金the open competition project to select the best candidates to undertake major science and key research projectsofTonglingcity,AnhuiProvince(No.202101JB002)A proportion of this work was supported by the High Magnetic Field Laboratory of Anhui Province and Academician workstation of Hangzhou Xingyu Carbon Environmental Tech Co.,Ltd.,and the Hefei Institutes of Physical Science Director's Fund(No.YZJJ-GGZX-2022-01).
文摘The growing concern about thermal conductivityand electromagnetic shielding inelectronic equipment has promoted the development of interfacial film materials.In this work,polyvinylidene fluoride(PVDF)/graphene composite films with different graphene contents were fabricated by high-energy ball milling,cold isostatic pressing,scraping and coating,successively.High-energy ball milling is beneficial to the dispersion of graphene powder,while cold isostatic pressing can greatly enhance thermal conductivity and mechanical strength by reducing the voids in the film and increasing the contact area of graphene sheets.The thermal conductivity,tensile strength and electromagnetic shielding properties of the films were carefully investigated and compared.It was demonstrated that the thermal conductivity increased from 0.19 Wm-1.K-1 for pure PVDF to 103.9 W-m-1.K-1 for the composite film with PVDF:graphene=1:3.Meanwhile the electromagnetic shielding efficiency can reach 36.55 dB.The prepared PVDF/graphene composite films exhibit outstanding overall performance and have the potential for practical applications.
文摘As electronic devices continue to evolve toward miniaturization and integration,traditional thermal interface materials(TIMs)are no longer able to meet the ever-tougher thermal management challenges.Owing to their high thermal conductivity and excellent conformability within a highly confined space,liquid metals have great potential for advanced thermal management in various cutting-edge devices and have become a key candidate for next-generation high-performance TIMs.In addition to already known materials,such as liquid metal alloy TIMs,particle-filled liquid metal TIMs,and liquid metal-filled TIMs,more TIMs are still being developed.This review presents a systematic classification of the liquid metal TIMs developed thus far,interprets the fundamental mechanisms underlying material innovation and in-situ heat transfer enhancement,and comparatively evaluates their respective advantages and shortcomings.Subsequently,a series of representative theoretical models for characterizing the thermal conductivities of composites are summarized,and the limits of the thermal conductivity of liquid metal TIMs are predicted to guide practical R&D efforts.To address the urgent need for higher-performance TIMs to overcome future thermal management challenges of electronic devices,a roadmap is outlined for the development of high-performance liquid metal TIMs,and a strategy for running these technologies is demonstrated.
基金the National Key Research and Development Program,No.2021YFB3800800the National Natural Science Foundation of China,Nos.31922041,32171341,32301113,the 111 Project,No.B14018+3 种基金the Science and Technology Innovation Project and Excellent Academic Leader Project of Shanghai Science and Technology Committee,Nos.21S31901500,21XD1421100the National Postdoctoral Program for Innovative Talents,No.BX20230122the Shanghai Sailing Program,No.23YF1409700the China Postdoctoral Science Foundation,No.D100-5R-22114.
文摘Recent advances in neuroelectrode interface materials and modification technologies are reviewed. Brain-computer interface is the new method of human-computer interaction, which not only can realise the exchange of information between the human brain and external devices, but also provides a brand-new means for the diagnosis and treatment of brain-related diseases. The neural electrode interface part of brain-computer interface is an important area for electrical, optical and chemical signal transmission between brain tissue system and external electronic devices, which determines the performance of brain-computer interface. In order to solve the problems of insufficient flexibility, insufficient signal recognition ability and insufficient biocompatibility of traditional rigid electrodes, researchers have carried out extensive studies on the neuroelectrode interface in terms of materials and modification techniques. This paper introduces the biological reactions that occur in neuroelectrodes after implantation into brain tissue and the decisive role of the electrode interface for electrode function. Following this, the latest research progress on neuroelectrode materials and interface materials is reviewed from the aspects of neuroelectrode materials and modification technologies, firstly taking materials as a clue, and then focusing on the preparation process of neuroelectrode coatings and the design scheme of functionalised structures.
基金supported by the National Natural Science Foundation of China(No.52076041)the Natural Science Foundation of Jiangsu Province(No.BK20200371)the Nanjing Carbon Peak and Carbon Neutrality Science and Technology Innovation Project(No.202211009)。
文摘Vertically aligned carbon nanotubes arrays(VACNTs)are a promising candidate for the thermal interface material(TIM)of next-generation electronic devices due to their attractive thermal and mechanical properties.However,the environment required for synthesizing VACNTs is harsh and severely incompatible with standard device packaging processes.VACNTs’extremely low in-plane thermal conductivity also limits its performance for cooling hot spots.Here,using a transfer-and-encapsulate strategy,a two-step soldering method is developed to cap both ends of the VACNTs with copper microfoils,forming a standalone Cu-VACNTs-Cu sandwich TIM and avoiding the need to directly grow VACNTs on chip die.This new TIM is fully compatible with standard packaging,with excellent flexibility and high thermal conductivities in both in-plane and through-plane directions.The mechanical compliance behavior and mechanism,which are critical for TIM applications,are investigated in depth using in situ nanoindentation.The thermal performance is further verified in an actual light emitting diode(LED)cooling experiment,demonstrating low thermal resistance,good reliability,and achieving a 17℃ temperature reduction compared with state-of-the-art commercial TIMs.This study provides a viable solution to VACNTs’longstanding problem in device integration and free-end contact resistance,bringing it much closer to application and solving the critical thermal bottleneck in next-generation electronics.
基金the support of National Key Project of Research and Development Plan No.2018YFB0703600NSFC program No.51872133 and 51572282Guangdong Innovative and Entrepreneurial Research Team Program,No.2016ZT06G578.
文摘The past years has observed a significantly boost of the thermoelectric materials in the scale of thermoelectric figure-of-merit,i.e.ZT,because of its promising application to harvest the widely distributed waste heat.However,the simplified thermoelectric materials'performance scale also shifted the focus of thermoelectric energy conversion technique from devices-related efforts to materials-level works.As a result,the thermoelectric devices-related works didn't get enough attention.The device-level challenges behind were kept unknown until recent years.However,besides the thermoelectric materials properties,the practical energy conversion efficiency and service life of thermoelectric device is highly determined by assembling process and the contact interface.In this perspective,we are trying to shine some light on the device-level challenge,and give a special focus on the thermoelectric interface materials(TEiM)between the thermoelectric elements and electrode,which is also known as the metallization layer or solder barrier layer.We will go through the technique concerns that determine the scope of the TEiM,including bonding strength,interfacial resistance and stability.Some general working principles are summarized before the discussion of some typical examples of searching proper TEiM for a given thermoelectric conversion material.
基金supported by the National Basic Research Program of China (No.2010CB631006)the National Natural Science Foundation of China (No.51171191)
文摘Thermal resistance of low-melting-temperature alloy (LMTA) thermal interface materials (TIMs) was measured by laser flash method before and after different stages of heating. The results showed that the thermal performance of the LMTA TIMs was degraded during the heating process. It is suggested that the degradation may mainly be attributed to the interfacial reaction between the Cu and the molten LMTAs. Due to the fast growth rate of intermetallic compound (IMC) at the solid-liquid interface, a thick brittle IMC is layer formed at the interface, which makes cracks easy to initiate and expand. Otherwise, the losses of indium and tin contents in the LMTA during the interfacial reaction will make the melting point of the TIM layer increase, and so, the TIM layer will not melt at the operating temperature.
基金supported by the National Natural Science Foundation of China (Grant Nos. 52075527, U1709205, and 52102055)National Key R&D Program of China (Grant Nos. 2017YFB0406000, and 2017YFE0128600)+8 种基金Project of the Chinese Academy of Sciences (Grant Nos. XDC07030100, XDA22020602, ZDKYYQ20200001, and ZDRW-CN-20193)CAS Youth Innovation Promotion Association (Grant No. 2020301)Science and Technology Major Project of Ningbo (Grant Nos. 2021Z120, 2021Z115, 2022Z084, 2018B10046, and 2016S1002)Natural Science Foundation of Ningbo (Grant No. 2017A610010)Foundation of State Key Laboratory of Solid lubrication (Grant No. LSL-1912)China Postdoctoral Science Foundation (Grant Nos. 2020M681965, and 2022M713243)National Key Laboratory of Science and Technology on Advanced Composites in Special Environments (Grant No. 6142905192806)K. C. Wong Education Foundation (Grant No. GJTD-2019-13)3315 Program of Ningbo for financial support。
文摘With the explosive development in integration of electronic components and the increasing complexity of packaging systems,semiconductor chips own extremely high operation temperatures given by the horrible heat accumulation attributed to the drastically increasing power density. Therefore, highly efficient heat dissipation with the help of rationally designed thermal interface materials(TIMs) is the key to maintaining the device performance and lifespan. Graphene exhibits an ultrahigh intrinsic thermal conductivity, which has attracted a large amount of academic interest due to its significant potential for developing high-performance TIMs. In this tutorial review, we summarize the recent advances in graphene-based TIMs, especially emphasizing the determinate effects of graphene structure and alignment in enhancing the heat transfer capacity of corresponding samples,with detailed discussion in the superiorities and limitations of various graphene skeletons. In addition, we also provide prospects for the challenges and opportunities in the future development of graphene-based TIMs.
基金This work was supported by the National Key Research and Development Program of China(No.2020YFB040176)National Natural Science Foundation of China(No.52073300 and 62104161)+3 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2019354)Guangdong Province Key Field R&D Program Project(No.2020B010190004),Shenzhen Science and Technology Research Funding(No.JCYJ20200109114401708)Key Project of Science and Technol-ogy of Changsha(kq2102005)Guangdong Provincial Key Laboratory(2014B030301014).
文摘The emerging applications of composite gels as thermal interface ma-terials(TIMs)for chip heat dissipation in intelligent vehicle and wear-able devices require high thermal conductivity and remarkable damp-ing properties.However,thermal conductivity and damping proper-ties are usually correlated and coupled each other.Here,inspired by Maxwell theory and adhesion mechanism of gecko’s setae,we present a strategy to fabricate polydimethylsiloxane-based composite gels in-tegrating high thermal conductivity and remarkable damping prop-erties over a broad frequency and temperature range.The multiple relaxation modes of dangling chains and the dynamic interaction be-tween the dangling chains and aluminum fillers can efficiently dis-sipate the vibration energy,endowing the composite gels with ultra-high damping property(tanδ>0.3)over a broad frequency(0.01-100 Hz)and temperature range(-50-150°C),which exceeds typi-cal state-of-the-art damping materials.The dangling chains also com-fort to the interfaces between polymer matrix and aluminum via van der Waals interaction,resulting in high thermal conductivity(4.72±0.04 W m-1 K-1).Using the polydimethylsiloxane-based composite gel as TIMs,we demonstrate effective heat dissipation in chip oper-ating under vigorous vibrations.We believe that our strategy could be applied to a wide range of composite gels and lead to the devel-opment of high-performance composite gels as TIMs for chip heat dissipation.
基金supported by the German Research Foundation(Deutsche Forschungsgemeinschaft)(WE 736/30-1)
文摘Imperfect bonding between the constitutive components can greatly affect the properties of the composite structures.An asymptotic analysis of different types of imperfect interfaces arising in the problem of 2D fibrereinforced composite materials are proposed.The performed study is based on the asymptotic reduction of the governing biharmonic problem into two harmonic problems.All solutions are obtained in a closed analytical form.The obtained results can be used for the calculation of pull-out and pushout tests,as well as for the investigation of the fracture of composite materials.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52130303,52327802,52303101,52173078,51973158)the China Postdoctoral Science Foundation(2023M732579)+2 种基金Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001)National Key R&D Program of China(No.2022YFB3805702)Joint Funds of Ministry of Education(8091B032218).
文摘Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.