期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Design-Manufacture Interface Relationship Management in Supply Chain
1
作者 朱岩梅 尤建新 Paul Schoensleben 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第5期680-683,共4页
As firms come under greater market pressure, the management of the inter-functional design/manufacture relationship becomes a more important competitive variable. The characteristics of the design-manufacture interfac... As firms come under greater market pressure, the management of the inter-functional design/manufacture relationship becomes a more important competitive variable. The characteristics of the design-manufacture interface were analyzed, and several methods of the design-manufacture interface relationship management were compared. Based on theories concerned and enterprise practice, how to manage the relationship of design-manufacture interface to reduce the product cost and shorten the time-to-market was demonstrated, finally the competitive advantage was improved. 展开更多
关键词 supply chain DESIGN MANUFACTURE design-manufacture interface relationship
下载PDF
TiN/γ-Fe interface orientation relationship and formation mechanism of TiN precipitates in Mn18Cr2 steel 被引量:1
2
作者 Zheng-hui Wang Jing-pei Xie +3 位作者 Qian Li Wen-yan Wang Ai-qin Wang Pei Liu 《China Foundry》 SCIE CAS 2021年第3期180-184,共5页
A Mn18Cr2 steel containing TiN precipitates was fabricated by vacuum induction melting.The morphology of TiN precipitates and the interface orientation relationship between TiN and γ-Fe were characterized by means of... A Mn18Cr2 steel containing TiN precipitates was fabricated by vacuum induction melting.The morphology of TiN precipitates and the interface orientation relationship between TiN and γ-Fe were characterized by means of SEM,TEM and SAED,and the formation mechanism of TiN precipitates in Mn18Cr2 steel was clarified.Results show that the TiN precipitates are more likely to exhibit a cubic-shaped morphology and form both within the grain and at the grain boundary of γ-Fe.The interface orientation relationship between TiN and γ-Fe is determined as follows:(100)_(TiN)//■_(γ-Fe),■_(TiN)//■_(γ-Fe).Because of the smallest interfacialmisfit,the secondary close-packed lane {100} of TiN preferentially combines with the close-packed plane {111} of γ-Fe during the precipitation in order to minimize the interface energy.After nucleation,the TiN precipitates exhibit cubic appearance due to the fact that the TiN has a FCC structure with rock salt type structure.This study provides reference for the material design of the austenitic high-manganese steels with excellent yield strength. 展开更多
关键词 Mn18Cr2 steel TiN precipitates interface orientation relationship interface misfit
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部