In the last decades, surface drag reduction has been re-emphasized because of its practical values in engineering applications,including vehicles, aircrafts, ships, and fuel pipelines. The bionic study of drag reducti...In the last decades, surface drag reduction has been re-emphasized because of its practical values in engineering applications,including vehicles, aircrafts, ships, and fuel pipelines. The bionic study of drag reduction has been attracting scholars' attentions. Here, it was determined that the delicate microstructures on the scales of the fish Ctenopharyngodon idellus exhibit remarkable drag-reduction effect. In addition, the underlying drag-reduction mechanism was carefully investigated. First,exceptional morphologies and structures of the scales were observed and measured using a scanning electron microscope and3-dimensional(3D) microscope. Then, based on the acquired data, optimized 3D models were created. Next, the mechanism of the water-trapping effect of these structures was analyzed through numerical simulations and theoretical calculations. It was determined that there are many microcrescent units with certain distributions on its surface. In fact, these crescents are effective in generating the "water-trapping" effect and forming a fluid-lubrication film, thus reducing the skin friction drag effectively.Contrasting to a smooth surface, the dynamics finite-element analysis indicated that the maximum drag-reduction rate of a bionic surface is 3.014% at 0.66 m/s flow rate. This study can be used as a reference for an in-depth analysis on the bionic drag reduction of boats, underwater vehicles, and so forth.展开更多
Oxidation rates and scale/steel interface configuration of 9Ni steels were investigated at 1000--1 250 ℃ in air. The results revealed that Cu addition caused high temperature oxidation resistance to deteriorate. High...Oxidation rates and scale/steel interface configuration of 9Ni steels were investigated at 1000--1 250 ℃ in air. The results revealed that Cu addition caused high temperature oxidation resistance to deteriorate. High tempera ture oxidation rates increased and scale/steel interface configuration became complicated due to Cu addition. Scale/ steel interface appeared to be network above certain temperature. Temperature required to form network scale/steel interface dropped more than 100 ℃ for 1.5% Cu-containing steel. (Fe,Ni,Cu)x Oy in inner oxidation layer dissocia ted to Fe-Ni-Cu phase and released active oxygen which can react with base steel easily. So the inner oxidation layer became the second source of oxidizing agent besides atmosphere. Internal stress at austenite grain boundary caused local oxide to fragment. So the scale/steel interface appeared to be network. Liquid Si-rich phase formed at sufficient ly high temperature. Penetration of the liquid Si-rich phase along austenite grain enhanced austenite grain oxidizing.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51305282,51505183&51325501)Program for Excellent Talents of Liaoning Provincial Committee of Education(Grant No.LJQ2014071)
文摘In the last decades, surface drag reduction has been re-emphasized because of its practical values in engineering applications,including vehicles, aircrafts, ships, and fuel pipelines. The bionic study of drag reduction has been attracting scholars' attentions. Here, it was determined that the delicate microstructures on the scales of the fish Ctenopharyngodon idellus exhibit remarkable drag-reduction effect. In addition, the underlying drag-reduction mechanism was carefully investigated. First,exceptional morphologies and structures of the scales were observed and measured using a scanning electron microscope and3-dimensional(3D) microscope. Then, based on the acquired data, optimized 3D models were created. Next, the mechanism of the water-trapping effect of these structures was analyzed through numerical simulations and theoretical calculations. It was determined that there are many microcrescent units with certain distributions on its surface. In fact, these crescents are effective in generating the "water-trapping" effect and forming a fluid-lubrication film, thus reducing the skin friction drag effectively.Contrasting to a smooth surface, the dynamics finite-element analysis indicated that the maximum drag-reduction rate of a bionic surface is 3.014% at 0.66 m/s flow rate. This study can be used as a reference for an in-depth analysis on the bionic drag reduction of boats, underwater vehicles, and so forth.
基金Item Sponsored by National High Technology Research and Development Program of China(2007AA03A228)
文摘Oxidation rates and scale/steel interface configuration of 9Ni steels were investigated at 1000--1 250 ℃ in air. The results revealed that Cu addition caused high temperature oxidation resistance to deteriorate. High tempera ture oxidation rates increased and scale/steel interface configuration became complicated due to Cu addition. Scale/ steel interface appeared to be network above certain temperature. Temperature required to form network scale/steel interface dropped more than 100 ℃ for 1.5% Cu-containing steel. (Fe,Ni,Cu)x Oy in inner oxidation layer dissocia ted to Fe-Ni-Cu phase and released active oxygen which can react with base steel easily. So the inner oxidation layer became the second source of oxidizing agent besides atmosphere. Internal stress at austenite grain boundary caused local oxide to fragment. So the scale/steel interface appeared to be network. Liquid Si-rich phase formed at sufficient ly high temperature. Penetration of the liquid Si-rich phase along austenite grain enhanced austenite grain oxidizing.