期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
CALCULATION OF THE DAMPING OF THE Zn-27Al ALLOY BASED ON THE MICRO INTERFACE SLIDING MODEL 被引量:2
1
作者 Y.Z. Zhao Q. Gao Y.C. Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第3期228-234,共7页
The microstructures of the Zn-27Al alloy after modification, solid-solution treatment, and natural aging were studied. It was clarified why the damping properties of Zn-27Al alloys, after treatment, had advanced most ... The microstructures of the Zn-27Al alloy after modification, solid-solution treatment, and natural aging were studied. It was clarified why the damping properties of Zn-27Al alloys, after treatment, had advanced most on the basis of analyzing the microstructures. Approximate expressions have been educed, which can be used to quantificationally work out the damping of the Zn-27Al alloy on the basis of the micro interface sliding model. By comparing the testing damping properties of the foundry Zn-27Al alloys and the Zn-27Al alloys after modification, solid solution, and natural aging, it was shown that the expressions were rational. 展开更多
关键词 MODIFICATION solid solution and aging damping micromechanism micro interface sliding model
下载PDF
Numerical Prediction of Hydrodynamic Forces on A Ship Passing Through A Lock 被引量:1
2
作者 王宏志 邹早建 《China Ocean Engineering》 SCIE EI CSCD 2014年第3期421-432,共12页
While passing through a lock, a ship usually undergoes a steady forward motion at low speed. Owing to the size restriction of lock chamber, the shallow water and bank effects on the hydrodynamic forces acting on the s... While passing through a lock, a ship usually undergoes a steady forward motion at low speed. Owing to the size restriction of lock chamber, the shallow water and bank effects on the hydrodynamic forces acting on the ship may be remarkable, which may have an adverse effect on navigation safety. However, the complicated hydrodynamics is not yet fully understood. This paper focuses on the hydrodynamic forces acting on a ship passing through a lock. The unsteady viscous flow and hydrodynamic forces are calculated by applying an unsteady RANS code with a RNG k-e turbulence model. User-defined function (UDF) is compiled to define the ship motion. Meanwhile, the grid regeneration is dealt with by using the dynamic mesh method and sliding interface technique. Numerical study is carried out for a bulk carrier ship passing through the Pierre Vandamme Lock in Zeebrugge at the model scale. The proposed method is validated by comparing the numerical results with the data of captive model tests. By analyzing the numerical results obtained at different speeds, water depths and eccentricities, the influences of speed, water depth and eccentricity on the hydrodynamic forces are illustrated. The numerical method proposed in this paper can qualitatively predict the ship-lock hydrodynamic interaction. It can provide certain guidance on the manoeuvring and control of ships passing through a lock. 展开更多
关键词 ship-lock hydrodynamic interaction numerical simulation dynamic mesh sliding interface
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部