期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Interface fracture toughness and fracture mechanisms of thermal barrier coatings investigated by indentation test and acoustic emission technique 被引量:1
1
作者 韩纪层 郭平 +2 位作者 罗建霞 张志超 李强 《China Welding》 EI CAS 2016年第3期63-70,共8页
Interface fracture toughness and fracture mechanisms of plasma-/sprayed thermal barrier coatings (TBCs) were investigated by interfacial indentation test ( HT) in combination with acoustic emission ( AE ) measur... Interface fracture toughness and fracture mechanisms of plasma-/sprayed thermal barrier coatings (TBCs) were investigated by interfacial indentation test ( HT) in combination with acoustic emission ( AE ) measurement. Critical load and AE energy were employed to calculate interface fracture toughness. The critical point at which crack appears at the interface was determined by the HT. AE signals produced during total indentation test not only are used to investigate the interface cracking behavior by Fast Fourier Transform (FFT) and wavelet transforms but also supply the mechanical information. The result shows that the AE signals associated with coating plastic deformation during indentation are of a more continuous type with a lower characteristic frequency content (30 -60 kHz) , whereas the instantaneous relaxation associated with interface crack initiation produces burst type AE signals with a characteristic frequency in the range 70 - 200 kHz. The AE signals energy is concentrated on different scales for the coating plastic deformation, interface crack initiation and interface crack propagation. Interface fracture toughness calculated by AE energy was 1. 19 MPam1/2 close to 1.58 MPam1/2 calculated by critical load. It indicates that the acoustic emission energy is suitable to reflect the interface fracture toughness. 展开更多
关键词 thermal barrier coating acoustic emission interface indentation test interface fracture toughness
下载PDF
Experimental study on the shear behavior of the interface between cushion materials and the concrete raft 被引量:1
2
作者 Li Yaokun Han Xiaolei +1 位作者 Khaled Galal Ji Jing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第1期165-178,共14页
Cushion is a layer of granular materials between the raft and the ground. The shear behavior of the interface between the cushion and the raft may influence the seismic performance of the superstructure. In order to q... Cushion is a layer of granular materials between the raft and the ground. The shear behavior of the interface between the cushion and the raft may influence the seismic performance of the superstructure. In order to quantify such influences, horizontal shear tests on the interfaces between different cushion materials and concrete raft under monotonic and cyclic loading were carried out. The vertical pressure P_v, material type and cushion thickness h_c were taken as variables. Conclusions include: 1) under monotonic loading, P_v is the most significant factor; the shear resistance P_(hmax) increases as P_v increases, but the normalized factor of resistance μ_n has an opposite tendency; 2) for the materials used in this study, μ_n varies from 0.40 to 0.70, the interface friction angle δ_s varies from 20° to 35°, while u_(max) varies from 3 mm to 15 mm; 3) under cyclic loading, the interface behavior can be abstracted as a "three-segment" back-bone curve, the main parameters include μ_n, the displacement u_1 and stiffness K_1 of the elastic stage, the displacement u_2 and stiffness K_2 of the plastic stage; 4) by observation and statistical analysis, the significance of different factors, together with values of K_1, K_2 and μ_n have been obtained. 展开更多
关键词 cushion/raft interface shear behavior monotonic test cyclic test "three-segment" back-bone curve
下载PDF
Stability analysis of shallow tunnels subjected to eccentric loads by a boundary element method 被引量:6
3
作者 Mehdi Panji Hamid Koohsari +2 位作者 Mohammad Adampira Hamid Alielahi Jafar Asgari Marnani 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第4期480-488,共9页
This paper presents the results of the shear strength(frictional strength) of cemented paste backfillcemented paste backfill(CPB-CPB) and cemented paste backfillerock wall(CPB-rock) interfaces. The frictional be... This paper presents the results of the shear strength(frictional strength) of cemented paste backfillcemented paste backfill(CPB-CPB) and cemented paste backfillerock wall(CPB-rock) interfaces. The frictional behaviors of these interfaces were assessed for the short-term curing times(3 d and 7 d) using a direct shear apparatus RDS-200 from GCTS(Geotechnical Consulting & Testing Systems). The shear(friction) tests were performed at three different constant normal stress levels on flat and smooth interfaces. These tests aimed at understanding the mobilized shear strength at the CPB-rock and CPB-CPB interfaces during and/or after open stope filling(no exposed face). The applied normal stress levels were varied in a range corresponding to the usually measured in-situ horizontal pressures(longitudinal or transverse) developed within paste-filled stopes(uniaxial compressive strength, s c 150 k Pa). Results show that the mobilized shear strength is higher at the CPB-CPB interface than that at the CPB-rock interface. Also, the perfect elastoplastic behaviors observed for the CPB-rock interfaces were not observed for the CPB-CPB interfaces with low cement content which exhibits a strain-hardening behavior. These results are useful to estimate or validate numerical model for pressures determination in cemented backfill stope at short term. The tests were performed on real backfill and granite. The results may help understanding the mechanical behavior of the cemented paste backfill in general and, in particular, analyzing the shear strength at backfillebackfill and backfill-rock interfaces. 展开更多
关键词 Cemented paste backfill(CPB) Shear tests Backfill-rock wall interface Shear strength Adhesion Apparent cohesion interface friction angle
下载PDF
Design and verification of on-chip debug circuit based on JTAG
4
作者 Bai Chuang Lü Hao +1 位作者 Zhang Wei Li Fan 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2021年第3期95-101,共7页
An on-chip debug circuit based on Joint Test Action Group(JTAG)interface for L-digital signal processor(L-DSP)is proposed,which has debug functions such as storage resource access,central processing unit(CPU)pipeline ... An on-chip debug circuit based on Joint Test Action Group(JTAG)interface for L-digital signal processor(L-DSP)is proposed,which has debug functions such as storage resource access,central processing unit(CPU)pipeline control,hardware breakpoint/observation point,and parameter statistics.Compared with traditional debug mode,the proposed debug circuit completes direct transmission of data between peripherals and memory by adding data test-direct memory access(DT-DMA)module,which improves debug efficiency greatly.The proposed circuit was designed in a 0.18μm complementary metal-oxide-semiconductor(CMOS)process with an area of 167234.76μm~2 and a power consumption of 8.89 mW.And the proposed debug circuit and L-DSP were verified under a field programmable gate array(FPGA).Experimental results show that the proposed circuit has complete debug functions and the rate of DT-DMA for transferring debug data is three times faster than the CPU. 展开更多
关键词 on-chip debug data test-direct memory access(DT-DMA) joint test action group(JTAG)interface L-digital signal processor(L-DSP)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部