A model based on analysis of the self-consistent Poisson-Schrodinger equation is proposed to investigate the tunneling current of electrons in the inversion layer of a p-type metal-oxide-semiconductor (MOS) structur...A model based on analysis of the self-consistent Poisson-Schrodinger equation is proposed to investigate the tunneling current of electrons in the inversion layer of a p-type metal-oxide-semiconductor (MOS) structure. In this model, the influences of interface trap charge (ITC) at the Si-SiO2 interface and fixed oxide charge (FOC) in the oxide region are taken into account, and one-band effective mass approximation is used. The tunneling probability is obtained by employing the transfer matrix method. Further, the effects of in-plane momentum on the quantization in the electron motion perpendicular to the Si-SiO2 interface of a MOS device are investigated. Theoretical simulation results indicate that both ITC and FOC have great influence on the tunneling current through a MOS structure when their densities are larger than l012 cm 2, which results from the great change of bound electrons near the Si-SiO2 interface and the oxide region. Therefore, for real ultrathin MOS structures with ITC and FOC, this model can give a more accurate description for the tunneling current in the inversion layer.展开更多
A two-dimensional analytical model of double-gate(DG) tunneling field-effect transistors(TFETs) with interface trapped charges is proposed in this paper. The influence of the channel mobile charges on the potentia...A two-dimensional analytical model of double-gate(DG) tunneling field-effect transistors(TFETs) with interface trapped charges is proposed in this paper. The influence of the channel mobile charges on the potential profile is also taken into account in order to improve the accuracy of the models. On the basis of potential profile,the electric field is derived and the expression for the drain current is obtained by integrating the BTBT generation rate. The model can be used to study the impact of interface trapped charges on the surface potential, the shortest tunneling length, the drain current and the threshold voltage for varying interface trapped charge densities, length of damaged region as well as the structural parameters of the DG TFET and can also be utilized to design the charge trapped memory devices based on TFET. The biggest advantage of this model is that it is more accurate,and in its expression there are no fitting parameters with small calculating amount. Very good agreements for both the potential, drain current and threshold voltage are observed between the model calculations and the simulated results.展开更多
A semi-empirical analytic model for the threshold voltage instability of a MOSFET is derived from Shockley-Read-Hall (SRH) statistics to account for the transient charging effects in a MOSFET high-k gate stack. Star...A semi-empirical analytic model for the threshold voltage instability of a MOSFET is derived from Shockley-Read-Hall (SRH) statistics to account for the transient charging effects in a MOSFET high-k gate stack. Starting from the single energy level and single trap assumption, an analytical expression for the filled trap density in terms of dynamic time is derived from SRH statistics. The semi-empirical analytic model for the threshold voltage instability is developed based on MOSFET device physics between the threshold voltage and the induced trap density. The obtained model is also verified by extensive experimental data of trapping and de-trapping stress from different high-k gate configurations.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 61076055)the Program for Innovative Research Team of Zhejiang Normal University of China (Grant No. 2007XCXTD-5)the Open Program of Surface Physics Laboratory of Fudan University, China (Grant No. FDSKL2011-04)
文摘A model based on analysis of the self-consistent Poisson-Schrodinger equation is proposed to investigate the tunneling current of electrons in the inversion layer of a p-type metal-oxide-semiconductor (MOS) structure. In this model, the influences of interface trap charge (ITC) at the Si-SiO2 interface and fixed oxide charge (FOC) in the oxide region are taken into account, and one-band effective mass approximation is used. The tunneling probability is obtained by employing the transfer matrix method. Further, the effects of in-plane momentum on the quantization in the electron motion perpendicular to the Si-SiO2 interface of a MOS device are investigated. Theoretical simulation results indicate that both ITC and FOC have great influence on the tunneling current through a MOS structure when their densities are larger than l012 cm 2, which results from the great change of bound electrons near the Si-SiO2 interface and the oxide region. Therefore, for real ultrathin MOS structures with ITC and FOC, this model can give a more accurate description for the tunneling current in the inversion layer.
基金Project supported by the National Natural Science Foundation of China(No.61376106)the University Natural Science Research Key Project of Anhui Province(No.KJ2016A169)the Introduced Talents Project of Anhui Science and Technology University
文摘A two-dimensional analytical model of double-gate(DG) tunneling field-effect transistors(TFETs) with interface trapped charges is proposed in this paper. The influence of the channel mobile charges on the potential profile is also taken into account in order to improve the accuracy of the models. On the basis of potential profile,the electric field is derived and the expression for the drain current is obtained by integrating the BTBT generation rate. The model can be used to study the impact of interface trapped charges on the surface potential, the shortest tunneling length, the drain current and the threshold voltage for varying interface trapped charge densities, length of damaged region as well as the structural parameters of the DG TFET and can also be utilized to design the charge trapped memory devices based on TFET. The biggest advantage of this model is that it is more accurate,and in its expression there are no fitting parameters with small calculating amount. Very good agreements for both the potential, drain current and threshold voltage are observed between the model calculations and the simulated results.
基金supported by the Special Funds for the State Key Development Program for Basic Research of Chinathe National Natural Science Foundation of China (No.60876027)
文摘A semi-empirical analytic model for the threshold voltage instability of a MOSFET is derived from Shockley-Read-Hall (SRH) statistics to account for the transient charging effects in a MOSFET high-k gate stack. Starting from the single energy level and single trap assumption, an analytical expression for the filled trap density in terms of dynamic time is derived from SRH statistics. The semi-empirical analytic model for the threshold voltage instability is developed based on MOSFET device physics between the threshold voltage and the induced trap density. The obtained model is also verified by extensive experimental data of trapping and de-trapping stress from different high-k gate configurations.