期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Influence of Deposition Temperature on the Electrical and Electrochemical Properties of Carbon-Based Coatings for Metallic Bipolar Plates, Prepared by Cathodic Arc Evaporation
1
作者 Maximilian Steinhorst Maurizio Giorgio +1 位作者 Teja Roch Christoph Leyens 《Advances in Materials Physics and Chemistry》 2022年第4期47-57,共11页
Cathodic arc evaporation is a well-established physical vapor deposition technique which is characterized by a high degree of ionization and high deposition rate. So far, this technique has been mainly used for the de... Cathodic arc evaporation is a well-established physical vapor deposition technique which is characterized by a high degree of ionization and high deposition rate. So far, this technique has been mainly used for the deposition of tribological coatings. In this study, anti-corrosive and electrical conductive carbon-based coatings with a metallic interlayer were prepared on stainless steel substrates as surface modification for metallic bipolar plates. Hereby, the influence of the deposition temperature during the deposition of the carbon top layer was investigated. Raman spectroscopy revealed differences in the microstructure at 200°C compared to 300°C and 100°C. Measurements of the interfacial contact resistance showed that the deposited coatings significantly improve the electrical conductivity. There are only minor differences between the different carbon top layers. The corrosion resistance of the coatings was studied via potentiodynamic polarization at room temperature and 80°C. Experiments showed that the coating with a carbon top layer deposited at 200°C, considerably reduces the current density and thus corrosion of the substrate is suppressed. 展开更多
关键词 Bipolar Plate CORROSION interfacial contact resistance Carbon Thin Film Physical Vapor Deposition
下载PDF
Design and fabrication of bipolar plates for PEM water electrolyser 被引量:1
2
作者 Xiejing Luo Chenhao Ren +7 位作者 Jie Song Hong Luo Kui Xiao Dawei Zhang Junjie Hao Zhanfeng Deng Chaofang Dong Xiaogang Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第15期19-41,共23页
Hydrogen energy,whether in generation plants or utilization facilities,plays a decisive role in the mission to achieve net-zero greenhouse gas emissions,all to minimize pollution.The growing demand for clean energy ca... Hydrogen energy,whether in generation plants or utilization facilities,plays a decisive role in the mission to achieve net-zero greenhouse gas emissions,all to minimize pollution.The growing demand for clean energy carrier steadily accelerates the development of hydrogen production processes,and therein proton exchange membrane(PEM)water electrolysis is deemed a promising long-term strategy for hydrogen preparation and collection.This review retrospects recent developments and applications of bipolar plates(BPs)as key components in PEM fuel cells and water electrolysers.The main content includes multifaceted challenges in the R&D or fabrication of BPs and potential future trends have also been proposed.Specific details cover the BPs matrix(metallic materials and carbon composites)and the surface coating types(metal and compound coatings,carbon-based coatings,and polymer coatings),as well as the influence of flow field design for mass transport.Long-term development and feasible researches of BPs are prospected.Especially in the following aspects:(1)Structural and functional integration of components,such as material fabrication and flow field geometry optimization using 3D printing technology;(2)Introduction of environment-friendly renewable energy for hydrogen production;(3)Research on hydrogen energy reversible systems;(4)Composition optimization of surface coatings based on computational materials science and(5)systematic design expected to evolve into the next generation of BPs. 展开更多
关键词 PEM water electrolyser Bipolar plates CORROSION COATINGS interfacial contact resistance
原文传递
Electrochemical Properties of Tungsten-Alloying-Modified AISI 430 Stainless Steel as Bipolar Plates for PEMFCs used in Marine Environment 被引量:2
3
作者 Jin-Long Cui Zhen-Dong Yao +5 位作者 Yong-Fu Cui Fu-Peng Cheng Ting Xiao Hong-Liang Sun Ru-Jin Tian Jun-Cai Sun 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第10期920-927,共8页
To improve the corrosion resistance and surface electrical conductivity of AISI 430 stainless steel (430 SS) as bipolar plates for proton exchange membrane fuel cells (PEMFCs) used in marine environment, a tungste... To improve the corrosion resistance and surface electrical conductivity of AISI 430 stainless steel (430 SS) as bipolar plates for proton exchange membrane fuel cells (PEMFCs) used in marine environment, a tungsten alloying layer has been successfully prepared on 430 SS substrate via the plasma surface diffusion alloying technique. The tungsten- modified (W-modified) 430 SS displays a 7-8 Ixm tungsten alloying layer with a body-centered-cubic structure. The W-modified surface also shows a better hydrophobicity with contact angle of 93.5~ and a lower interfacial contact resistance compared with the untreated 430 SS. The potentiodynamic and potentiostatic polarization and electrochemical impedance spectroscopy measurements show that the corrosion resistance of 430 SS is obviously improved in simulated PEMFC environment (0.05 M H2SO4 + 2 ppm HF + 0.01 M NaC1 solution at 70℃), after the plasma surface diffusion alloying process. 展开更多
关键词 Tungsten alloying layer Corrosion resistance Proton exchange membrane fuel cell interfacial contact resistance Bipolar plates
原文传递
Performance of Nb_(0.8)Zr_(0.2) Layer-Modified AISI430 Stainless Steel as Bipolar Plates for Direct Formic Acid Fuel Cells 被引量:1
4
作者 Yuanyuan Liu Zhongmin Lang +1 位作者 Jinlong Cui Shengli An 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第1期77-84,共8页
To improve the interfacial conductivity and corrosion resistance of AISI430 stainless steel(430 SS)as bipolar plates for direct formic acid fuel cells(DFAFCs),a Nb_(0.8)Zr_(0.2) layer has been successfully synthesized... To improve the interfacial conductivity and corrosion resistance of AISI430 stainless steel(430 SS)as bipolar plates for direct formic acid fuel cells(DFAFCs),a Nb_(0.8)Zr_(0.2) layer has been successfully synthesized via the pulsed laser deposition(PLD)technique on the surface of 430 SS.This Nb_(0.8)Zr_(0.2) layer is smooth,uniform,and comparatively compact without any surface flaw and micropore.Investigation under the simulated anodic environment of DFAFCs(0.05 M H_(2)SO_(4)+2 ppm HF+10 M HCOOH at 70℃)shows that the corrosion resistance of 430 SS is obviously ameliorated after the PLD modification.In addition,the interfacial contact resistance of Nb_(0.8)Zr_(0.2)-430 SS(6.0 mΩcm^(2))is much smaller than that of bare 430 SS(151.3 mΩcm^(2))at the clamping force of 140 N cm^(-2).Besides,diff erent from the highly increased interfacial contact resistance of bare 430 SS,the Nb_(0.8)Zr_(0.2)-430 SS shows a minor increase resistance after potentiostatic tests in simulated anodic environment of DFAFCs. 展开更多
关键词 Corrosion resistance Nb_(0.8)Zr_(0.2) LAYER Direct formic acid fuel cell interfacial contact resistance BIPOLAR PLATES
原文传递
Spontaneous escape behavior of silver from graphite-like carbon coating and its inhibition mechanism 被引量:1
5
作者 Wenting Shao Xinyu Zhang +2 位作者 Bailing Jiang Cancan Liu Hongtao Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第11期1402-1408,共7页
A series of silver-doped graphite-like carbon coatings was prepared on the surface of aluminum alloy using the magnetron sputtering method. The spontaneous escape behavior and inhibition mechanism of silver from graph... A series of silver-doped graphite-like carbon coatings was prepared on the surface of aluminum alloy using the magnetron sputtering method. The spontaneous escape behavior and inhibition mechanism of silver from graphite-like carbon coating were studied. The results showed that when the sample prepared with a 0.01-A current on the silver target was placed in an atmospheric environment for 0.5 h, an apparent silver escape phenomenon could be observed. However, the silver escape phenomenon was not observed for samples prepared with a 0.05-A current on the silver target if the sample was retained in a 10^(-1) Pa vacuum environment, even after 48 h. Compared with the sample placed in the atmospheric environment immediately after an ion plating process, the silver escape time lagged for 6 h. Nanometer-thick pure carbon coating coverage could effectively suppress silver escape. When the coating thickness reached700 nm, permanent retention of silver could be achieved in the silver-doped graphite-like carbon coating.As the silver residue content in the graphite-like carbon coating increased from 2.27 at.% to 5.35 at.%, the interfacial contact resistance of the coating decreased from 51mΩcm^2 to 6 mΩcm^2. 展开更多
关键词 Silver Graphite-like carbon coating Spontaneous escape mechanism Inhibition mechanism interfacial contact resistance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部