A penny-shaped interfacial crack between dissimilar magnetoelectroelastic layers subjected to magnetoelectromechanical loads is investigated,where the magnetoelectrically impermeable crack surface condition is adopted...A penny-shaped interfacial crack between dissimilar magnetoelectroelastic layers subjected to magnetoelectromechanical loads is investigated,where the magnetoelectrically impermeable crack surface condition is adopted. By using Hankel transform technique,the mixed boundary value problem is firstly reduced to a system of singular integral equations,which are further reduced to a system of algebraic equations. The field intensity factors and energy release rate are finally derived. Numerical results elucidate the eects of crack configuration,electric and/or magnetic loads,and material parameters of the magnetoelectroelastic layers on crack propagation and growth. This work should be useful for the design of magnetoelectroelastic composite structures.展开更多
基金supported by the National Natural Science Foundation of China (10772123)the Natural Science Fund for Outstanding Younger of Hebei Province of China (A2009001624)
文摘A penny-shaped interfacial crack between dissimilar magnetoelectroelastic layers subjected to magnetoelectromechanical loads is investigated,where the magnetoelectrically impermeable crack surface condition is adopted. By using Hankel transform technique,the mixed boundary value problem is firstly reduced to a system of singular integral equations,which are further reduced to a system of algebraic equations. The field intensity factors and energy release rate are finally derived. Numerical results elucidate the eects of crack configuration,electric and/or magnetic loads,and material parameters of the magnetoelectroelastic layers on crack propagation and growth. This work should be useful for the design of magnetoelectroelastic composite structures.