Thermal barrier coatings(TBCs) usually exhibit an uncertain lifetime owing to their scattering mechanical properties and severe service conditions. To consider these uncertainties, a reliability assessment method is...Thermal barrier coatings(TBCs) usually exhibit an uncertain lifetime owing to their scattering mechanical properties and severe service conditions. To consider these uncertainties, a reliability assessment method is proposed based on failure probability analysis. First, a limit state equation is established to demarcate the boundary between failure and safe regions, and then the failure probability is calculated by the integration of a probability density function in the failure area according to the first- or second-order moment.It is shown that the parameters related to interfacial failure follow a Weibull distribution in two types of TBC. The interfacial failure of TBCs is significantly affected by the thermal mismatch of material properties and the temperature drop in service.展开更多
The mechanical properties, creep damage, creep rupture strength and features of interfacial failures of welded joints between martensite (SA213T91) and pearlite steel (12Cr1MoV) have been investigated by means of argo...The mechanical properties, creep damage, creep rupture strength and features of interfacial failures of welded joints between martensite (SA213T91) and pearlite steel (12Cr1MoV) have been investigated by means of argon tungsten pulsed arc welding, high temperature accelerated simulation, creep rupture, mechanical property tests and scanning electronic microscope (SEM). The research results indicate that the mechanical properties of overmatched and medium matched joint deteriorate obviously, and they are susceptible to creep damage and failure after accelerated simulation operation 500 h, in the condition of preheat 250℃, and post welding heat treatment 750℃×1 h. However, the mechanical properties of undermatched joint are the best, the interfacial failure tendency of undermatched welded joint is less than those of medium and overmatched welded joint. Therefore, it is reasonable that low alloy material TR31 is used as the filler metal of weld between SA213T91and 12Cr1MoV steel.展开更多
The ex-service steam tubes containing dissimilar metal weld(DMW)between high Cr ferritic steel T91 and austenitic stainless steel TP347H and the ex-service steam tubes containing DMW between low Cr ferritic steel G102...The ex-service steam tubes containing dissimilar metal weld(DMW)between high Cr ferritic steel T91 and austenitic stainless steel TP347H and the ex-service steam tubes containing DMW between low Cr ferritic steel G102 and austenitic stainless steel TP347H were obtained from coal-fired thermal power plants in China,and their microstructures at the nickel-based weld metal(WM)/ferritic steel interfaces and oxidation characteristics were investigated.After operating for 15,000 h at steam temperature of 541 C and steam pressure of 17.5 MPa,a G102/TP347H DMW failed along the WM/G102 steel interface,which was a dangerous premature failure mode without obvious plastic deformation.This interfacial failure was attributed to the interaction between oxidation and cracking along the interface,where fracture appeared to be related with the strain concentration at the interface.Oxide notch along the WM/G102 steel interface was the precursor of premature interfacial failure of DMW involving G102.For the DMW involving high Cr ferritic steel T91,ferritic steel side could form a Cr-rich passive film during service and thus would not be further oxidized after operating for 67,000 h at steam temperature of 541 C and steam pressure of 3.5 MPa.It was concluded that oxidation played a more important role in failure of these DMWs,and retarding the development of oxidation and avoiding the interfacial oxide notch would dramatically improve the service performance of steam tubes containing DMWs.展开更多
Micro-structure related behavior of diffusion bonding joints is a crucial issue in device and reactor fabrication of Micro Chemo Mechanical Systems.However,the previous studies have been focused on the macro mechanica...Micro-structure related behavior of diffusion bonding joints is a crucial issue in device and reactor fabrication of Micro Chemo Mechanical Systems.However,the previous studies have been focused on the macro mechanical performance of diffusion bonded joint,especially diffusion bonding conditions effects on tensile strength,shearing strength and fatigue strength.The research of interfacial micro-voids and microstructures evolution for failure mechanism has not been carried out for diffusion-bonded joints.An interfacial electrical resistance measuring method is proposed to evaluate the quality of bonded joints and verified by using two-dimensional finite-element simulation.The influences of micro void geometry on increments of resistance are analyzed and the relationship between bonded area fraction and resistance increment is established by theoretical analysis combined with simulated results.Metallographic inspections and micro-hardness testing are conducted near the interface of diffusion bonded joints.For the purpose of identifying the failure mechanisms of the joints,both microscopic tensile and fatigue tests are conducted on the self-developed in-situ microscopic fatigue testing system.Based on the microscopic observations,the mechanism of interfacial failure is addressed.The observation result shows that for 316LSS diffusion-bonded joints,microstructure evolution and effect of micro-voids play a key role in interfacial failure mechanism.Finally,a new life prediction model in terms of the increment of electrical resistance is developed and confirmed by the experimental results.The proposed study is initiated that constituted a primary interfacial failure mechanism on micron scale and provide the life prediction for reliability of components sealed by diffusion bonding.展开更多
基金supported by the National Natural Science Foundation of China (Grants 11002122, 51172192, and 11272275)the Military-Civil Special Foundation of Hunan Province (Grant 2013280)+1 种基金the Natural Science Foundation of Hunan Province (Grant 11JJ4003)the Doctoral Scientific Research Foundation of Xiangtan University (Grants KZ08022, KZ03013, and KF20140303)
文摘Thermal barrier coatings(TBCs) usually exhibit an uncertain lifetime owing to their scattering mechanical properties and severe service conditions. To consider these uncertainties, a reliability assessment method is proposed based on failure probability analysis. First, a limit state equation is established to demarcate the boundary between failure and safe regions, and then the failure probability is calculated by the integration of a probability density function in the failure area according to the first- or second-order moment.It is shown that the parameters related to interfacial failure follow a Weibull distribution in two types of TBC. The interfacial failure of TBCs is significantly affected by the thermal mismatch of material properties and the temperature drop in service.
文摘The mechanical properties, creep damage, creep rupture strength and features of interfacial failures of welded joints between martensite (SA213T91) and pearlite steel (12Cr1MoV) have been investigated by means of argon tungsten pulsed arc welding, high temperature accelerated simulation, creep rupture, mechanical property tests and scanning electronic microscope (SEM). The research results indicate that the mechanical properties of overmatched and medium matched joint deteriorate obviously, and they are susceptible to creep damage and failure after accelerated simulation operation 500 h, in the condition of preheat 250℃, and post welding heat treatment 750℃×1 h. However, the mechanical properties of undermatched joint are the best, the interfacial failure tendency of undermatched welded joint is less than those of medium and overmatched welded joint. Therefore, it is reasonable that low alloy material TR31 is used as the filler metal of weld between SA213T91and 12Cr1MoV steel.
基金National Natural Science Foundation of China(Project 51901113 and 51775300)the State Key Laboratory of Tribology in Tsinghua University,and the State Key Lab of Advanced Welding and Joining in Harbin Institute of Technology(No.AWJ-21M03).
文摘The ex-service steam tubes containing dissimilar metal weld(DMW)between high Cr ferritic steel T91 and austenitic stainless steel TP347H and the ex-service steam tubes containing DMW between low Cr ferritic steel G102 and austenitic stainless steel TP347H were obtained from coal-fired thermal power plants in China,and their microstructures at the nickel-based weld metal(WM)/ferritic steel interfaces and oxidation characteristics were investigated.After operating for 15,000 h at steam temperature of 541 C and steam pressure of 17.5 MPa,a G102/TP347H DMW failed along the WM/G102 steel interface,which was a dangerous premature failure mode without obvious plastic deformation.This interfacial failure was attributed to the interaction between oxidation and cracking along the interface,where fracture appeared to be related with the strain concentration at the interface.Oxide notch along the WM/G102 steel interface was the precursor of premature interfacial failure of DMW involving G102.For the DMW involving high Cr ferritic steel T91,ferritic steel side could form a Cr-rich passive film during service and thus would not be further oxidized after operating for 67,000 h at steam temperature of 541 C and steam pressure of 3.5 MPa.It was concluded that oxidation played a more important role in failure of these DMWs,and retarding the development of oxidation and avoiding the interfacial oxide notch would dramatically improve the service performance of steam tubes containing DMWs.
基金supported by National Natural Science Foundation of China(Grant No.50475068)
文摘Micro-structure related behavior of diffusion bonding joints is a crucial issue in device and reactor fabrication of Micro Chemo Mechanical Systems.However,the previous studies have been focused on the macro mechanical performance of diffusion bonded joint,especially diffusion bonding conditions effects on tensile strength,shearing strength and fatigue strength.The research of interfacial micro-voids and microstructures evolution for failure mechanism has not been carried out for diffusion-bonded joints.An interfacial electrical resistance measuring method is proposed to evaluate the quality of bonded joints and verified by using two-dimensional finite-element simulation.The influences of micro void geometry on increments of resistance are analyzed and the relationship between bonded area fraction and resistance increment is established by theoretical analysis combined with simulated results.Metallographic inspections and micro-hardness testing are conducted near the interface of diffusion bonded joints.For the purpose of identifying the failure mechanisms of the joints,both microscopic tensile and fatigue tests are conducted on the self-developed in-situ microscopic fatigue testing system.Based on the microscopic observations,the mechanism of interfacial failure is addressed.The observation result shows that for 316LSS diffusion-bonded joints,microstructure evolution and effect of micro-voids play a key role in interfacial failure mechanism.Finally,a new life prediction model in terms of the increment of electrical resistance is developed and confirmed by the experimental results.The proposed study is initiated that constituted a primary interfacial failure mechanism on micron scale and provide the life prediction for reliability of components sealed by diffusion bonding.