期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Micro–Nano Water Film Enabled High‑Performance Interfacial Solar Evaporation 被引量:1
1
作者 Zhen Yu Yuqing Su +3 位作者 Ruonan Gu Wei Wu Yangxi Li Shaoan Cheng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期503-517,共15页
Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable... Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable heat loss.Herein,we propose a novel interfacial evaporation structure based on the micro–nano water film,which demonstrates significantly improved evaporation performance,as experimentally verified by polypyrrole-and polydopamine-coated polydimethylsiloxane sponge.The 2D evaporator based on the as-prepared sponge realizes an enhanced evaporation rate of 2.18 kg m^(−2)h^(−1)under 1 sun by fine-tuning the interfacial micro–nano water film.Then,a homemade device with an enhanced condensation function is engineered for outdoor clean water production.Throughout a continuous test for 40 days,this device demonstrates a high water production rate(WPR)of 15.9–19.4 kg kW^(−1)h^(−1)m^(−2).Based on the outdoor outcomes,we further establish a multi-objective model to assess the global WPR.It is predicted that a 1 m^(2)device can produce at most 7.8 kg of clean water per day,which could meet the daily drinking water needs of 3 people.Finally,this technology could greatly alleviate the current water and energy crisis through further large-scale applications. 展开更多
关键词 Micro–nano water film interfacial solar evaporation solar desalination Artificial neural networks PPy sponge
下载PDF
Boosting extraction of Pb in contaminated soil via interfacial solar evaporation of multifunctional sponge
2
作者 Pan Wu Xuan Wu +3 位作者 Yida Wang Jingyuan Zhao Haolan Xu Gary Owens 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1459-1468,共10页
Interfacial solar water evaporation is a reliable way to accelerate water evaporation and contaminant remediation.Embracing the recent advance in photothermal technology,a functional sponge was prepared by coating a s... Interfacial solar water evaporation is a reliable way to accelerate water evaporation and contaminant remediation.Embracing the recent advance in photothermal technology,a functional sponge was prepared by coating a sodium alginate(SA)impregnated sponge with a surface layer of reduced graphene oxide(rGO)to act as a photothermal conversion medium and then subsequently evaluated for its ability to enhance Pb extraction from contaminated soil driven by interfacial solar evaporation.The SA loaded sponge had a Pb adsorption capacity of 107.4 mg g^(-1).Coating the top surface of the SA sponge with rGO increased water evaporation performance to 1.81 kg m^(-2)h^(-1)in soil media under one sun illumination and with a wind velocity of 2 m s^(-1).Over 12 continuous days of indoor evaporation testing,the Pb extraction efficiency was increased by 22.0%under 1 sun illumination relative to that observed without illumination.Subsequently,Pb extraction was further improved by 48.9%under outdoor evaporation conditions compared to indoor conditions.Overall,this initial work shows the significant potential of interfacial solar evaporation technologies for Pb contaminated soil remediation,which should also be applicable to a variety of other environmental contaminants. 展开更多
关键词 Photothermal materials interfacial solar evaporation Reduced graphene oxide Pb extraction Soil remediation
下载PDF
Recent strategies for constructing efficient interfacial solar evaporation systems 被引量:2
3
作者 Yida Wang Junqing Hu +3 位作者 Li Yu Xuan Wu Yingying Zhang Haolan Xu 《Nano Research Energy》 2023年第2期26-44,共19页
Interfacial solar evaporation(ISE)is a promising technology to relieve worldwide freshwater shortages owing to its high energy conversion efficiency and environmentally sustainable potential.So far,many innovative mat... Interfacial solar evaporation(ISE)is a promising technology to relieve worldwide freshwater shortages owing to its high energy conversion efficiency and environmentally sustainable potential.So far,many innovative materials and evaporators have been proposed and applied in ISE to enable highly controllable and efficient solar-to-thermal energy conversion.With rational design,solar evaporators can achieve excellent energy management for lowering energy loss,harvesting extra energy,and efficiently utilizing energy in the system to improve freshwater production.Beyond that,a strategy of reducing water vaporization enthalpy by introducing molecular engineering for water-state regulation has also been demonstrated as an effective approach to boost ISE.Based on these,this article discusses the energy nexus in two-dimensional(2D)and three-dimensional(3D)evaporators separately and reviews the strategies for design and fabrication of highly efficient ISE systems.The summarized work offers significant perspectives for guiding the future design of ISE systems with efficient energy management,which pave pathways for practical applications. 展开更多
关键词 interfacial solar evaporation photothermal materials energy management molecular engineering
原文传递
Biomass-enhanced Janus sponge-like hydrogel with salt resistance and highstrength for efficient solar desalination 被引量:1
4
作者 Aqiang Chu Meng Yang +4 位作者 Juanli Chen Jinmin Zhao Jing Fang Zhensheng Yang Hao Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第11期1698-1710,共13页
Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale ... Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates;however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including ahigh evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) withexcellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA)hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneouslyformed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy andthe modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m^(-2) h^(-1) under one sun illumination. Most importantly, owingto the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water(25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-costraw materials make CPAS extremely promising for practical applications. 展开更多
关键词 solar interfacial evaporation HYDROGEL Biomass DESALINATION Salt resistance
下载PDF
Directionally tailoring micro-nano hierarchical tower structured Mn_(0.6)Ni_(1.4)Co_(2)O_(y) toward solar interfacial evaporation
5
作者 Yi Zhang Shujuan Tan +2 位作者 Tong Xu Zhuoting Zhou Guanbgin Ji 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第27期21-30,共10页
Solar interfacial evaporation has been considered as a promising method to alleviate fresh water re-sources shortage.The shortage of freshwater resources requires advanced materials that can accelerate the evaporation... Solar interfacial evaporation has been considered as a promising method to alleviate fresh water re-sources shortage.The shortage of freshwater resources requires advanced materials that can accelerate the evaporation of water by the sun.However,the simple structure of photothermal materials are vitally restricted by finite light absorption.Herein,this work presents a strategy for the synthesis of a spinel-type micro-nano hierarchical tower structure solar absorbent(Mn_(0.6)Ni_(1.4)Co_(2)O_(y))with the low forbidden band(=1.56 eV)and high absorption(97.88%).The products show great potential in solar-thermal energy conversion by creating a trapping effect.The prepared solar absorbent and epoxy resin are evenly mixed and then fully immersed in polyurethane(PU)sponge for water evaporation.The hydrophilic and porous Mn_(0.6)Ni_(1.4)Co_(2)O_(y)@PU sponge can quickly deliver water upwards,suppress the heat loss,and concentrate the absorbed heat on the evaporation of water.The products exhibited an excellent evaporation rate of 2.261 kg m^(-2) h^(-1) and an impressive evaporation efficiency of 156%under a single sun exposure.Besides,the samples also can maintain the stability and recycling performance for a long time.These findings show that Mn_(0.6)Ni_(1.4)Co_(2)O_(y) have great application prospects in the solar interfacial evaporation. 展开更多
关键词 solar interfacial evaporation Photothermal conversion SPINEL Micro-nano hierarchical structure
原文传递
Recent innovations in 3D solar evaporators and their functionalities
6
作者 Yunzheng Liang Deyu Wang +5 位作者 Huimin Yu Xuan Wu Yi Lu Xiaofei Yang Gary Owens Haolan Xu 《Science Bulletin》 SCIE EI CAS CSCD 2024年第22期3590-3617,共28页
Interfacial solar evaporation(ISE)has emerged as a promising technology to alleviate global water scarcity via energy-efficient purification of both wastewater and seawater.While ISE was originally identified and deve... Interfacial solar evaporation(ISE)has emerged as a promising technology to alleviate global water scarcity via energy-efficient purification of both wastewater and seawater.While ISE was originally identified and developed during studies of simple double-layered two-dimensional(2D)evaporators,observed limitations in evaporation rate and functionality soon led to the development of three-dimensional(3D)evaporators,which is now recognized as one of the most pivotal milestones in the research field.3D evaporators significantly enhance the evaporation rates beyond the theoretical limits of 2D evaporators.Furthermore,3D evaporators could have multifaceted functionalities originating from various functional evaporation surfaces and 3D structures.This review summarizes recent advances in 3D evaporators,focusing on rational design,fabrication and energy nexus of 3D evaporators,and the derivative functions for improving solar evaporation performance and exploring novel applications.Future research prospects are also proposed based on the in-depth understanding of the fundamental aspects of 3D evaporators and the requirements for practical applications. 展开更多
关键词 interfacial solar evaporation 3D evaporators FUNCTIONALITY Energy management Salt management Applications
原文传递
More from less:improving solar steam generation by selectively removing a portion of evaporation surface 被引量:7
7
作者 Ting Gao Yida Wang +7 位作者 Xuan Wu Pan Wu Xiaofei Yang Qin Li Zhezi Zhang Dongke Zhang Gary Owens Haolan Xu 《Science Bulletin》 SCIE EI CAS CSCD 2022年第15期1572-1580,M0004,共10页
Using minimal photothermal material to achieve maximum evaporation rate is extremely important for practical applications of interfacial solar evaporation technology.In this work,we found that with the increase in the... Using minimal photothermal material to achieve maximum evaporation rate is extremely important for practical applications of interfacial solar evaporation technology.In this work,we found that with the increase in the size of evaporation surfaces,the evaporation rate decreased.Both experimental and numerical simulation results confirmed that when the evaporation surface size increased,the middle portion of the evaporation surface acted as a‘‘dead evaporation zone”with little contribution to water evaporation.Based on this,the middle portion of the evaporation surface was selectively removed,and counterintuitively,both the evaporation rate and vapor output were increased due to the reconfigured and enhanced convection above the entire evaporation surface.As such,this work developed an important strategy to achieve a higher evaporation rate and increased vapour output while using less material. 展开更多
关键词 interfacial solar evaporation Water evaporation solar-thermal energy Photothermal materials Photothermal evaporators Reduced graphene oxide
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部