期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Janus aramid nanofiber aerogel incorporating plasmonic nanoparticles for high-efficiency interfacial solar steam generation
1
作者 Hui Zhang Lei Feng +5 位作者 Fengyue Wang Mingze Liu Yingying Zhang Jia Zhu Yanqing Lu Ting Xu 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第5期30-40,共11页
Interfacial solar steam generation(ISSG)is a novel and potential solution to global freshwater crisis.Here,based on a facile sol-gel fabrication process,we demonstrate a highly scalable Janus aramid nanofiber aerogel(... Interfacial solar steam generation(ISSG)is a novel and potential solution to global freshwater crisis.Here,based on a facile sol-gel fabrication process,we demonstrate a highly scalable Janus aramid nanofiber aerogel(JANA)as a high-efficiency ISSG device.JANA performs near-perfect broadband optical absorption,rapid photothermal conversion and effective water transportation.Owning to these features,efficient desalination of salty water and purification of municipal sewage are successfully demonstrated using JANA.In addition,benefiting from the mechanical property and chemical stability of constituent aramid nanofibers,JANA not only possesses outstanding flexibility and fire-resistance properties,but its solar steaming efficiency is also free from the influences of elastic deformations and fire treatments.We envision JANA provides a promising platform for mass-production of high-efficiency ISSG devices with supplementary capabilities of convenient transportation and long-term storage,which could further promote the realistic applications of ISSG technology. 展开更多
关键词 plasmonics interfacial solar steam generation broadband optical absorption AEROGEL
下载PDF
Synergism of solar-driven interfacial evaporation and photo-Fenton Cr(Ⅵ) reduction by sustainable Bi-MOF-based evaporator from waste polyester
2
作者 Zifen Fan Jie Liu +7 位作者 Huajian Liu Lijie Liu Yan She Xueying Wen Huiyue Wang Guixin Hu Ran Niu Jiang Gong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期527-540,共14页
The integration of interfacial solar steam generation and photocatalytic degradation technology has pro-vided a promising platform to simultaneously produce freshwater and degrade pollutants.However,con-structing low-... The integration of interfacial solar steam generation and photocatalytic degradation technology has pro-vided a promising platform to simultaneously produce freshwater and degrade pollutants.However,con-structing low-cost,multi-functional evaporators for treating Cr(Ⅵ)-polluted water remains challenging,and the synergistic mechanism on Cr(Ⅵ)reduction is fuzzy.Herein,we propose the combined strategy of ball milling and solution mixing for the sustainable production of Bi-MOF microrod from waste poly(ethylene terephthalate),and construct Bi-MOF-based solar evaporators for simultaneous photo-Fenton Cr(Ⅵ)reduction and freshwater production.Firstly,the evaporator comprised of Bi-MOF microrod and graphene nanosheet possesses high light absorption,efficient photothermal conversion,and good hydro-philic property.Attributing to the advantages,the hybrid evaporator exhibits the evaporation rate of 2.16 kg m^(-2) h^(-1) and evaporation efficiency of 87.5%under 1 kW m^(-2) of irradiation.When integrating with photo-Fenton reaction,the Cr(Ⅵ)reduction efficiency is 91.3%,along with the reaction kinetics of 0.0548 min^(-1),surpassing many advanced catalysts.In the outdoor freshwater production and Cr(Ⅵ)reduction,the daily accumulative water yield is 5.17 kg m^(-2) h^(-1),and the Cr(Ⅵ)reduction efficiency is 99.9%.Furthermore,we prove that the localization effect derived from the interfacial solar-driven evap-oration enhances H_(2)O_(2) activation for the photo-Fenton reduction of Cr(Ⅵ).Based on the result of density functional theory,Bi-MOF microrod provides rich active centers for H_(2)O_(2) activation to produce active sites such as e-or-O_(2).This study not only proposes a new strategy to construct multi-functional solar evaporators for freshwater production and catalytic reduction of pollutants,but also advances the chem-ical upcycling of waste polyesters. 展开更多
关键词 interfacial solar steam generation Cr(VI)reduction Photo-Fenton reaction Metal-organic framework Waste plastic upcycling
下载PDF
Recent Advances in Fibrous Materials for Interfacial Solar Steam Generation 被引量:4
3
作者 Can Ge Duo Xu +6 位作者 Heng Du Ze Chen Jingyu Chen Zhuoer Shen Weilin Xu Qian Zhang Jian Fang 《Advanced Fiber Materials》 SCIE EI 2023年第3期791-818,共28页
The scarcity of fresh water resources has become a serious issue hindering the sustainable development of modern civilization.The interfacial solar steam generation(ISSG)system that produces heat on material surface t... The scarcity of fresh water resources has become a serious issue hindering the sustainable development of modern civilization.The interfacial solar steam generation(ISSG)system that produces heat on material surface through photothermal conversion for desalination has been demonstrated as a promising candidate for practical application.Fibrous materials with unique flexibility,durability,processability,practicability,and multifunctionality have attracted considerable attention in the ISSG field.In this review,the basics of fibrous materials,such as their classification,manufacturing methods and flexible fibrous structure,are firstly introduced.Afterward,the outstanding properties of fibrous materials on different dimensions are demonstrated,as well as the versatile morphologies and structures that allow fibrous materials to carry out different roles in ISSG.Moreover,the practicability and multifunctionality of fibrous materials are illustrated in detail by combining specific cases to show their promising potential in practical ISSG application.Finally,existing challenges and future opportunities of fibrous material-based ISSG systems are discussed. 展开更多
关键词 Fibrous material interfacial solar steam generation DESALINATION Photothermal conversion
原文传递
Applications of bio-derived/bio-inspired materials in the field of interfacial solar steam generation 被引量:2
4
作者 Yang Geng Kai Jiao +7 位作者 Xu Liu Peijin Ying Omololu Odunmbaku Yaoxin Zhang Swee Ching Tan Ling Li Wei Zhang Meng Li 《Nano Research》 SCIE EI CSCD 2022年第4期3122-3142,共21页
Interfacial solar steam generation(ISSG)system has attracted extensive attention as a sustainable desalination technology because of its cost efficiency and zero fossil-energy consumption.Aiming at optimizing the desa... Interfacial solar steam generation(ISSG)system has attracted extensive attention as a sustainable desalination technology because of its cost efficiency and zero fossil-energy consumption.Aiming at optimizing the desalination properties,materials and system design have been the current research focus.Recently,many novel bio-derived/bio-inspired design strategies were proposed owing to their highly efficient structures inherited from nature,which were fine-tuned over eons of evolution,as well as their low cost and ease of treatment.In this review,we are going to systematically report recent progress of various bio-derived/bio-inspired strategies in terms of optical design,wetting,thermal management,and overall system design,presenting an overview of the current challenges of bio-inspired materials in ISSG system and other application fields.This article is intended to provide a comprehensive review of recent developments about bio-derived/bio-inspired materials in ISSG system and conclude with suggestions regarding further research directions for performance enhancement through design of bio-derived/bio-inspired materials. 展开更多
关键词 interfacial solar steam generation bio-derived materials bio-inspired materials solar-thermal conversion thermal management
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部