Interfacial solar steam generation(ISSG)is a novel and potential solution to global freshwater crisis.Here,based on a facile sol-gel fabrication process,we demonstrate a highly scalable Janus aramid nanofiber aerogel(...Interfacial solar steam generation(ISSG)is a novel and potential solution to global freshwater crisis.Here,based on a facile sol-gel fabrication process,we demonstrate a highly scalable Janus aramid nanofiber aerogel(JANA)as a high-efficiency ISSG device.JANA performs near-perfect broadband optical absorption,rapid photothermal conversion and effective water transportation.Owning to these features,efficient desalination of salty water and purification of municipal sewage are successfully demonstrated using JANA.In addition,benefiting from the mechanical property and chemical stability of constituent aramid nanofibers,JANA not only possesses outstanding flexibility and fire-resistance properties,but its solar steaming efficiency is also free from the influences of elastic deformations and fire treatments.We envision JANA provides a promising platform for mass-production of high-efficiency ISSG devices with supplementary capabilities of convenient transportation and long-term storage,which could further promote the realistic applications of ISSG technology.展开更多
The integration of interfacial solar steam generation and photocatalytic degradation technology has pro-vided a promising platform to simultaneously produce freshwater and degrade pollutants.However,con-structing low-...The integration of interfacial solar steam generation and photocatalytic degradation technology has pro-vided a promising platform to simultaneously produce freshwater and degrade pollutants.However,con-structing low-cost,multi-functional evaporators for treating Cr(Ⅵ)-polluted water remains challenging,and the synergistic mechanism on Cr(Ⅵ)reduction is fuzzy.Herein,we propose the combined strategy of ball milling and solution mixing for the sustainable production of Bi-MOF microrod from waste poly(ethylene terephthalate),and construct Bi-MOF-based solar evaporators for simultaneous photo-Fenton Cr(Ⅵ)reduction and freshwater production.Firstly,the evaporator comprised of Bi-MOF microrod and graphene nanosheet possesses high light absorption,efficient photothermal conversion,and good hydro-philic property.Attributing to the advantages,the hybrid evaporator exhibits the evaporation rate of 2.16 kg m^(-2) h^(-1) and evaporation efficiency of 87.5%under 1 kW m^(-2) of irradiation.When integrating with photo-Fenton reaction,the Cr(Ⅵ)reduction efficiency is 91.3%,along with the reaction kinetics of 0.0548 min^(-1),surpassing many advanced catalysts.In the outdoor freshwater production and Cr(Ⅵ)reduction,the daily accumulative water yield is 5.17 kg m^(-2) h^(-1),and the Cr(Ⅵ)reduction efficiency is 99.9%.Furthermore,we prove that the localization effect derived from the interfacial solar-driven evap-oration enhances H_(2)O_(2) activation for the photo-Fenton reduction of Cr(Ⅵ).Based on the result of density functional theory,Bi-MOF microrod provides rich active centers for H_(2)O_(2) activation to produce active sites such as e-or-O_(2).This study not only proposes a new strategy to construct multi-functional solar evaporators for freshwater production and catalytic reduction of pollutants,but also advances the chem-ical upcycling of waste polyesters.展开更多
The scarcity of fresh water resources has become a serious issue hindering the sustainable development of modern civilization.The interfacial solar steam generation(ISSG)system that produces heat on material surface t...The scarcity of fresh water resources has become a serious issue hindering the sustainable development of modern civilization.The interfacial solar steam generation(ISSG)system that produces heat on material surface through photothermal conversion for desalination has been demonstrated as a promising candidate for practical application.Fibrous materials with unique flexibility,durability,processability,practicability,and multifunctionality have attracted considerable attention in the ISSG field.In this review,the basics of fibrous materials,such as their classification,manufacturing methods and flexible fibrous structure,are firstly introduced.Afterward,the outstanding properties of fibrous materials on different dimensions are demonstrated,as well as the versatile morphologies and structures that allow fibrous materials to carry out different roles in ISSG.Moreover,the practicability and multifunctionality of fibrous materials are illustrated in detail by combining specific cases to show their promising potential in practical ISSG application.Finally,existing challenges and future opportunities of fibrous material-based ISSG systems are discussed.展开更多
Interfacial solar steam generation(ISSG)system has attracted extensive attention as a sustainable desalination technology because of its cost efficiency and zero fossil-energy consumption.Aiming at optimizing the desa...Interfacial solar steam generation(ISSG)system has attracted extensive attention as a sustainable desalination technology because of its cost efficiency and zero fossil-energy consumption.Aiming at optimizing the desalination properties,materials and system design have been the current research focus.Recently,many novel bio-derived/bio-inspired design strategies were proposed owing to their highly efficient structures inherited from nature,which were fine-tuned over eons of evolution,as well as their low cost and ease of treatment.In this review,we are going to systematically report recent progress of various bio-derived/bio-inspired strategies in terms of optical design,wetting,thermal management,and overall system design,presenting an overview of the current challenges of bio-inspired materials in ISSG system and other application fields.This article is intended to provide a comprehensive review of recent developments about bio-derived/bio-inspired materials in ISSG system and conclude with suggestions regarding further research directions for performance enhancement through design of bio-derived/bio-inspired materials.展开更多
基金jointly supported by the National Natural Science Foundation of China (no. 62105142)Natural Science Foundation of Jiangsu Province (BK20220068)+1 种基金the Center Fundamental Research Funds for the Central UniversitiesEntrepreneurship and Innovation Program of Jiangsu Province (JSSCBS20210002)。
文摘Interfacial solar steam generation(ISSG)is a novel and potential solution to global freshwater crisis.Here,based on a facile sol-gel fabrication process,we demonstrate a highly scalable Janus aramid nanofiber aerogel(JANA)as a high-efficiency ISSG device.JANA performs near-perfect broadband optical absorption,rapid photothermal conversion and effective water transportation.Owning to these features,efficient desalination of salty water and purification of municipal sewage are successfully demonstrated using JANA.In addition,benefiting from the mechanical property and chemical stability of constituent aramid nanofibers,JANA not only possesses outstanding flexibility and fire-resistance properties,but its solar steaming efficiency is also free from the influences of elastic deformations and fire treatments.We envision JANA provides a promising platform for mass-production of high-efficiency ISSG devices with supplementary capabilities of convenient transportation and long-term storage,which could further promote the realistic applications of ISSG technology.
基金supported by the National Natural Science Foundation of China(52373099)the Innovation and Talent Recruitment Base of New Energy Chemistry and Device(B21003)。
文摘The integration of interfacial solar steam generation and photocatalytic degradation technology has pro-vided a promising platform to simultaneously produce freshwater and degrade pollutants.However,con-structing low-cost,multi-functional evaporators for treating Cr(Ⅵ)-polluted water remains challenging,and the synergistic mechanism on Cr(Ⅵ)reduction is fuzzy.Herein,we propose the combined strategy of ball milling and solution mixing for the sustainable production of Bi-MOF microrod from waste poly(ethylene terephthalate),and construct Bi-MOF-based solar evaporators for simultaneous photo-Fenton Cr(Ⅵ)reduction and freshwater production.Firstly,the evaporator comprised of Bi-MOF microrod and graphene nanosheet possesses high light absorption,efficient photothermal conversion,and good hydro-philic property.Attributing to the advantages,the hybrid evaporator exhibits the evaporation rate of 2.16 kg m^(-2) h^(-1) and evaporation efficiency of 87.5%under 1 kW m^(-2) of irradiation.When integrating with photo-Fenton reaction,the Cr(Ⅵ)reduction efficiency is 91.3%,along with the reaction kinetics of 0.0548 min^(-1),surpassing many advanced catalysts.In the outdoor freshwater production and Cr(Ⅵ)reduction,the daily accumulative water yield is 5.17 kg m^(-2) h^(-1),and the Cr(Ⅵ)reduction efficiency is 99.9%.Furthermore,we prove that the localization effect derived from the interfacial solar-driven evap-oration enhances H_(2)O_(2) activation for the photo-Fenton reduction of Cr(Ⅵ).Based on the result of density functional theory,Bi-MOF microrod provides rich active centers for H_(2)O_(2) activation to produce active sites such as e-or-O_(2).This study not only proposes a new strategy to construct multi-functional solar evaporators for freshwater production and catalytic reduction of pollutants,but also advances the chem-ical upcycling of waste polyesters.
基金support from the National Natural Science Foundation of China(52173059,U21A2095)The Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions(21KJA540002)The Key Research and Development Program of Hubei Province(2021BAA068).
文摘The scarcity of fresh water resources has become a serious issue hindering the sustainable development of modern civilization.The interfacial solar steam generation(ISSG)system that produces heat on material surface through photothermal conversion for desalination has been demonstrated as a promising candidate for practical application.Fibrous materials with unique flexibility,durability,processability,practicability,and multifunctionality have attracted considerable attention in the ISSG field.In this review,the basics of fibrous materials,such as their classification,manufacturing methods and flexible fibrous structure,are firstly introduced.Afterward,the outstanding properties of fibrous materials on different dimensions are demonstrated,as well as the versatile morphologies and structures that allow fibrous materials to carry out different roles in ISSG.Moreover,the practicability and multifunctionality of fibrous materials are illustrated in detail by combining specific cases to show their promising potential in practical ISSG application.Finally,existing challenges and future opportunities of fibrous material-based ISSG systems are discussed.
基金This work was financially supported by research grants from the National Natural Science Foundation of China(No.52173235)Natural Science Foundation of Chongqing(No.cstc2018jcyjAX0375)+1 种基金Fundamental Research Funds for the Central Universities(Nos.2020CDJQY-A055 and 2019CDXYDL0007)Key Innovation Project for Clinical Technology of the Second Affiliated Hospital of Army Medical University(No.2018JSLC0025).
文摘Interfacial solar steam generation(ISSG)system has attracted extensive attention as a sustainable desalination technology because of its cost efficiency and zero fossil-energy consumption.Aiming at optimizing the desalination properties,materials and system design have been the current research focus.Recently,many novel bio-derived/bio-inspired design strategies were proposed owing to their highly efficient structures inherited from nature,which were fine-tuned over eons of evolution,as well as their low cost and ease of treatment.In this review,we are going to systematically report recent progress of various bio-derived/bio-inspired strategies in terms of optical design,wetting,thermal management,and overall system design,presenting an overview of the current challenges of bio-inspired materials in ISSG system and other application fields.This article is intended to provide a comprehensive review of recent developments about bio-derived/bio-inspired materials in ISSG system and conclude with suggestions regarding further research directions for performance enhancement through design of bio-derived/bio-inspired materials.