The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation....The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation. A proper control of oxygen content at the Al2O3-Ni interfacecan promote wetting at the intedece, and produce a mechanically interlocked and chemically strengthened intedece, causing most of the nickel particles to be stretched to failure and to expe-rience severe plastic deformation during crack propagation in the composite. Fracture toughnesstesting using a modified double cantilever beam method with in situ observation of crack prop-agation in a scanning electron microscope shows that the composite with the strengthenedinterface has a more desirable R-curve behaviour and a higher fracture toughness value than thenormal composite.展开更多
This study presents a simple technique for strengthening the adhesive-bond strength between aluminium(Al)substrate and carbon fibre reinforced polymer(CFRP) utilising resin pre-coating(RPC) with carbon nanotubes(CNTs)...This study presents a simple technique for strengthening the adhesive-bond strength between aluminium(Al)substrate and carbon fibre reinforced polymer(CFRP) utilising resin pre-coating(RPC) with carbon nanotubes(CNTs). The CNT-containing RPC solution with 90 wt% acetone and 10 wt% resin(without hardener) was applied onto Al substrates, where micro-/nano-vertical channels had been created by chemical or mechanical surface treatments to accommodate CNTs. RPC was able to fill all micro-/nano-cavities over the Al substrate surface, then CNTs were pulled into those vertical micro-channels by the capillary action generated from acetone evaporation.Normal epoxy adhesive(resin + hardener) was applied after the CNT-containing RPC treatment. CNTs bridging across the interface between the adhesive joint and Al substrate and sealing of micro-/nano-cavities by RPC effectively enhanced the interfacial shear bond strength between the Al substrate and CFRP by 30–100%depending on the Al substrate surface profiles. Al substrates with two different chemical treatments were compared in this study for the effectiveness of CNT interfacial reinforcement. Results from a steel substrate after sandblasting were also included for comparison.展开更多
文摘The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation. A proper control of oxygen content at the Al2O3-Ni interfacecan promote wetting at the intedece, and produce a mechanically interlocked and chemically strengthened intedece, causing most of the nickel particles to be stretched to failure and to expe-rience severe plastic deformation during crack propagation in the composite. Fracture toughnesstesting using a modified double cantilever beam method with in situ observation of crack prop-agation in a scanning electron microscope shows that the composite with the strengthenedinterface has a more desirable R-curve behaviour and a higher fracture toughness value than thenormal composite.
基金Chang’an University of China for a visiting professor grant (2018-2020) for research collaboration between Chang’an University and University of Western Australia。
文摘This study presents a simple technique for strengthening the adhesive-bond strength between aluminium(Al)substrate and carbon fibre reinforced polymer(CFRP) utilising resin pre-coating(RPC) with carbon nanotubes(CNTs). The CNT-containing RPC solution with 90 wt% acetone and 10 wt% resin(without hardener) was applied onto Al substrates, where micro-/nano-vertical channels had been created by chemical or mechanical surface treatments to accommodate CNTs. RPC was able to fill all micro-/nano-cavities over the Al substrate surface, then CNTs were pulled into those vertical micro-channels by the capillary action generated from acetone evaporation.Normal epoxy adhesive(resin + hardener) was applied after the CNT-containing RPC treatment. CNTs bridging across the interface between the adhesive joint and Al substrate and sealing of micro-/nano-cavities by RPC effectively enhanced the interfacial shear bond strength between the Al substrate and CFRP by 30–100%depending on the Al substrate surface profiles. Al substrates with two different chemical treatments were compared in this study for the effectiveness of CNT interfacial reinforcement. Results from a steel substrate after sandblasting were also included for comparison.