The problem regarding the reflection of plane waves in a transversely isotropic dissipative medium is considered, in which we are studying about the reflection of incidence waves in initially stressed dissipative half...The problem regarding the reflection of plane waves in a transversely isotropic dissipative medium is considered, in which we are studying about the reflection of incidence waves in initially stressed dissipative half space. After solving the governing equations, we find the two complex quasi-P (qP) and quasi-SV (qSV) waves. The occurrence of reflected waves is studied to calculate the reflection coefficient and the energy partition of incidence wave at the plane boundary of the dissipative medium. Numerical example is considered for the reflection coefficient and the partition of incident energy, in which we study about the effect of rotation, initial stresses and magnetic field.展开更多
The AB(Aharonov-Bohm)effect is a pivotal quantum mechanical phenomenon that illustrates the fundamental role of the electromagnetic vector potential A in determining the phase of a charged particle’s wave function,ev...The AB(Aharonov-Bohm)effect is a pivotal quantum mechanical phenomenon that illustrates the fundamental role of the electromagnetic vector potential A in determining the phase of a charged particle’s wave function,even in regions where the magnetic field B is zero.This effect demonstrates that quantum particles are influenced not only by the fields directly present but also by the potentials associated with those fields.In the AB effect,an electron beam is split into two paths,with one path encircling a solenoid and the other bypassing it.Despite the absence of a magnetic field in the regions traversed by the beams,the vector potential A associated with the magnetic flux Φ through the solenoid induces a phase shift in the electron’s wave function.This phase shift,quantified by △φ=qΦ/hc,manifests as a change in the interference pattern observed in the detection screen.The phenomenon underscores the principle of gauge invariance in QED(quantum electrodynamics),where physical observables remain invariant under local gauge transformations of the vector and scalar potentials.This reinforces the notion that the vector potential A has a profound impact on quantum systems,beyond its classical role.This article outlines the AB effect,including its theoretical framework,experimental observations,and implications.The focus on the role of the vector potential in quantum mechanics provides a comprehensive understanding of this important phenomenon.展开更多
A sedimentary geological model is established in order to study the seismic reflection characteristics of channel sand bodies. Synthetic seismic shot gathers are simulated using the acoustic wave equation and then are...A sedimentary geological model is established in order to study the seismic reflection characteristics of channel sand bodies. Synthetic seismic shot gathers are simulated using the acoustic wave equation and then are prestack time migrated. On the imaged data, the reflection characteristics and instantaneous attributes are analyzed and log-constrained impedance inversion is tested. Because of wave field interference, the experimental results show that seismic events do not definitely correspond to the channel sand bodies and that seismic modes of occurrence do not represent the actual ones. The seismic events formed by wave interference may lead to errors and pitfalls in sand body interpretation. The corresponding relations between instantaneous seismic attributes and sedimentary sands are not well established. Log-constrained impedance inversion improves the resolution of channel sands. However, if the inverted resolution is forced to be too high, artifacts related to the initial model may occur.展开更多
This paper presents quiet zone design using ultrasonic transducers for local active control in pure tone diffuse fields. Most of researches in local active noise control used conventional loudspeakers for the secondar...This paper presents quiet zone design using ultrasonic transducers for local active control in pure tone diffuse fields. Most of researches in local active noise control used conventional loudspeakers for the secondary sources to produce quiet zones. Recently ultrasonic transducers have been used for the secondary sources to control the plane wave in active noise control. However there is no research related to active noise control in diffuse fields using ultrasonic transducers. Therefore this study uses ultrasonic transducers for the secondary sources to control the diffuse fields. The quiet zone produced using ultrasonic transducers in single tone diffuse fields has been analyzed through simulations in this work. The results showed that quiet zones created using ultrasonic transducers were larger than those created using conventional loudspeakers. This is due to the fact that the audible sound pressure produced by the ultrasonic transducers decays slowly with the distance. Therefore the secondary field created by an ultrasonic transducer could fit the primary field better and the larger zone of quiet could be obtained using the ultrasonic transducer. Also the audible sound produced by the ultrasonic transducers is directional;therefore the sound pressure amplification outside the quiet zones was lower.展开更多
We report on the observation of subcycle interferences of electron wave packets released during strong field ionization of H_2 with cycle-shaped two-color laser fields. With a reaction microscope we measure three-dime...We report on the observation of subcycle interferences of electron wave packets released during strong field ionization of H_2 with cycle-shaped two-color laser fields. With a reaction microscope we measure three-dimensional momentum distributions of photoelectrons correlated with either H_2^+ or protons within different energy ranges generated by dissociation of H_2^+. We refer to these different types of photoelectrons as channels. Our results show that the subcycle interference structures of electron wave packets are very sensitive to the cycle shape of the two-color laser field. We explain this behavior by the dependence of the ionization time within an optical cycle on the shape of the laser field cycle. The subcycle interference structures can be further used to obtain insight into the subcycle dynamics of molecules during strong field interaction.展开更多
The elliptic motion of particle in the fields of the inhomogeneous plane wavs that are generated on a liquid thermoviscoelastic solid interface is studied.. Calculations show that the ellipticity of the motion of Part...The elliptic motion of particle in the fields of the inhomogeneous plane wavs that are generated on a liquid thermoviscoelastic solid interface is studied.. Calculations show that the ellipticity of the motion of Particle is related to the incident angle that the homogeneous plane wave incidents upon the interface. The influeree of viscous properties of solid on the ellipticity of particle's motion is small and shows near the critical angles of longitudinal and transversal wavs. Under the incidence at Rayleigh angle, the change of the ellipticity of motion of the particle is periodic in the wake of its Rayleigh wavelength and its elliptic locus is couoter clockwise and clockwise rotation periodically.展开更多
The coherent effects including counter-rotating coupling on spontaneous emission are presented for a microwave driven V-type three-level atom. Novel coherent effects are realized: (i) There is an infinite series of...The coherent effects including counter-rotating coupling on spontaneous emission are presented for a microwave driven V-type three-level atom. Novel coherent effects are realized: (i) There is an infinite series of spectral lines, which are separated by the microwave frequency, independent of the separation of the excited states, no matter whether the microwave transition is resonant or not. This is in sharp contrast to the case of the weak coupling, where the spectral interval is mainly determined by the separation of the excited states. (ii) Selective appearance and inhibition of the spectral lines are obtained simply by varying the microwave Rabi frequency. (iii) Spectral lines have a twofold structure. The physical mechanisms are analysed by employing the dressed states representation.展开更多
Explicit fomulas for 2-D electroelastic fundamental solutions in general anisotropic piezoelectric media subjected to a line force and a line charge are obtained by using the plane wave decomposition method and a subs...Explicit fomulas for 2-D electroelastic fundamental solutions in general anisotropic piezoelectric media subjected to a line force and a line charge are obtained by using the plane wave decomposition method and a subsequent application of the residue calculus. 'Anisotropic' means that any material symmetry restrictions are not assumed. 'Two dimensional' includes not only in-plane problems but also anti-plane problems and problems in which in-plane and anti-plane deformations couple each other. As a special case, the solutions for transversely isotropic piezoelectric media are given.展开更多
The reflected field of pulsed cylindrical waves from a liquid-solid interface is studied by the numerical method and the experimental method. The reflected field is calculated and shown in gray pictures. The calculate...The reflected field of pulsed cylindrical waves from a liquid-solid interface is studied by the numerical method and the experimental method. The reflected field is calculated and shown in gray pictures. The calculated incident angles θn (n=1, 2, 3, ...) of a series of minimums (or nulls) on the reflected wavefront are presented. The measured angle of the minimum from Schlieren photograph is consistent with that by calculation. The appearance of minimums is explained by the interference between the reflected wave and the head wave, and by the radiated dissipation of the head wave. The leading phase angle of the head wave to the reflected wave is proved to be about 3π/4 by the numerical calculation.展开更多
This paper presents a further numerical study of the interaction dynamics for solitary waves in a nonlinear Dirac model with scalar self-interaction,the Soler model,by using a fourth order accurate Runge-Kutta discont...This paper presents a further numerical study of the interaction dynamics for solitary waves in a nonlinear Dirac model with scalar self-interaction,the Soler model,by using a fourth order accurate Runge-Kutta discontinuous Galerkin method.The phase plane method is employed for the first time to analyze the interaction of Dirac solitary waves and reveals that the relative phase of those waves may vary with the interaction.In general,the interaction of Dirac solitary waves depends on the initial phase shift.If two equal solitary waves are in-phase or out-of-phase initially,so are they during the interaction;if the initial phase shift is far away from 0 andπ,the relative phase begins to periodically evolve after a finite time.In the interaction of out-of-phase Dirac solitary waves,we can observe:(a)full repulsion in binary and ternary collisions,depending on the distance between initial waves;(b)repulsing first,attracting afterwards,and then collapse in binary and ternary collisions of initially resting two-humped waves;(c)one-overlap interaction and two-overlap interaction in ternary collisions of initially resting waves.展开更多
文摘The problem regarding the reflection of plane waves in a transversely isotropic dissipative medium is considered, in which we are studying about the reflection of incidence waves in initially stressed dissipative half space. After solving the governing equations, we find the two complex quasi-P (qP) and quasi-SV (qSV) waves. The occurrence of reflected waves is studied to calculate the reflection coefficient and the energy partition of incidence wave at the plane boundary of the dissipative medium. Numerical example is considered for the reflection coefficient and the partition of incident energy, in which we study about the effect of rotation, initial stresses and magnetic field.
文摘The AB(Aharonov-Bohm)effect is a pivotal quantum mechanical phenomenon that illustrates the fundamental role of the electromagnetic vector potential A in determining the phase of a charged particle’s wave function,even in regions where the magnetic field B is zero.This effect demonstrates that quantum particles are influenced not only by the fields directly present but also by the potentials associated with those fields.In the AB effect,an electron beam is split into two paths,with one path encircling a solenoid and the other bypassing it.Despite the absence of a magnetic field in the regions traversed by the beams,the vector potential A associated with the magnetic flux Φ through the solenoid induces a phase shift in the electron’s wave function.This phase shift,quantified by △φ=qΦ/hc,manifests as a change in the interference pattern observed in the detection screen.The phenomenon underscores the principle of gauge invariance in QED(quantum electrodynamics),where physical observables remain invariant under local gauge transformations of the vector and scalar potentials.This reinforces the notion that the vector potential A has a profound impact on quantum systems,beyond its classical role.This article outlines the AB effect,including its theoretical framework,experimental observations,and implications.The focus on the role of the vector potential in quantum mechanics provides a comprehensive understanding of this important phenomenon.
基金National 973 Key Basic Research Development Program(No.2007CB209608)National 863 High Technology Research Development Program(No.2007AA06Z218)
文摘A sedimentary geological model is established in order to study the seismic reflection characteristics of channel sand bodies. Synthetic seismic shot gathers are simulated using the acoustic wave equation and then are prestack time migrated. On the imaged data, the reflection characteristics and instantaneous attributes are analyzed and log-constrained impedance inversion is tested. Because of wave field interference, the experimental results show that seismic events do not definitely correspond to the channel sand bodies and that seismic modes of occurrence do not represent the actual ones. The seismic events formed by wave interference may lead to errors and pitfalls in sand body interpretation. The corresponding relations between instantaneous seismic attributes and sedimentary sands are not well established. Log-constrained impedance inversion improves the resolution of channel sands. However, if the inverted resolution is forced to be too high, artifacts related to the initial model may occur.
文摘This paper presents quiet zone design using ultrasonic transducers for local active control in pure tone diffuse fields. Most of researches in local active noise control used conventional loudspeakers for the secondary sources to produce quiet zones. Recently ultrasonic transducers have been used for the secondary sources to control the plane wave in active noise control. However there is no research related to active noise control in diffuse fields using ultrasonic transducers. Therefore this study uses ultrasonic transducers for the secondary sources to control the diffuse fields. The quiet zone produced using ultrasonic transducers in single tone diffuse fields has been analyzed through simulations in this work. The results showed that quiet zones created using ultrasonic transducers were larger than those created using conventional loudspeakers. This is due to the fact that the audible sound pressure produced by the ultrasonic transducers decays slowly with the distance. Therefore the secondary field created by an ultrasonic transducer could fit the primary field better and the larger zone of quiet could be obtained using the ultrasonic transducer. Also the audible sound produced by the ultrasonic transducers is directional;therefore the sound pressure amplification outside the quiet zones was lower.
基金financed by the Austrian Science Fund(FWF)under grants P25615-N27,P28475-N27,P21463N22,P27491-N27 and SFB-F49 NEXTliteby a starting grant from the European Research Council(ERC project CyFi)
文摘We report on the observation of subcycle interferences of electron wave packets released during strong field ionization of H_2 with cycle-shaped two-color laser fields. With a reaction microscope we measure three-dimensional momentum distributions of photoelectrons correlated with either H_2^+ or protons within different energy ranges generated by dissociation of H_2^+. We refer to these different types of photoelectrons as channels. Our results show that the subcycle interference structures of electron wave packets are very sensitive to the cycle shape of the two-color laser field. We explain this behavior by the dependence of the ionization time within an optical cycle on the shape of the laser field cycle. The subcycle interference structures can be further used to obtain insight into the subcycle dynamics of molecules during strong field interaction.
文摘The elliptic motion of particle in the fields of the inhomogeneous plane wavs that are generated on a liquid thermoviscoelastic solid interface is studied.. Calculations show that the ellipticity of the motion of Particle is related to the incident angle that the homogeneous plane wave incidents upon the interface. The influeree of viscous properties of solid on the ellipticity of particle's motion is small and shows near the critical angles of longitudinal and transversal wavs. Under the incidence at Rayleigh angle, the change of the ellipticity of motion of the particle is periodic in the wake of its Rayleigh wavelength and its elliptic locus is couoter clockwise and clockwise rotation periodically.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60378008 and 10574052.
文摘The coherent effects including counter-rotating coupling on spontaneous emission are presented for a microwave driven V-type three-level atom. Novel coherent effects are realized: (i) There is an infinite series of spectral lines, which are separated by the microwave frequency, independent of the separation of the excited states, no matter whether the microwave transition is resonant or not. This is in sharp contrast to the case of the weak coupling, where the spectral interval is mainly determined by the separation of the excited states. (ii) Selective appearance and inhibition of the spectral lines are obtained simply by varying the microwave Rabi frequency. (iii) Spectral lines have a twofold structure. The physical mechanisms are analysed by employing the dressed states representation.
文摘Explicit fomulas for 2-D electroelastic fundamental solutions in general anisotropic piezoelectric media subjected to a line force and a line charge are obtained by using the plane wave decomposition method and a subsequent application of the residue calculus. 'Anisotropic' means that any material symmetry restrictions are not assumed. 'Two dimensional' includes not only in-plane problems but also anti-plane problems and problems in which in-plane and anti-plane deformations couple each other. As a special case, the solutions for transversely isotropic piezoelectric media are given.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 19604008 and 10074039).
文摘The reflected field of pulsed cylindrical waves from a liquid-solid interface is studied by the numerical method and the experimental method. The reflected field is calculated and shown in gray pictures. The calculated incident angles θn (n=1, 2, 3, ...) of a series of minimums (or nulls) on the reflected wavefront are presented. The measured angle of the minimum from Schlieren photograph is consistent with that by calculation. The appearance of minimums is explained by the interference between the reflected wave and the head wave, and by the radiated dissipation of the head wave. The leading phase angle of the head wave to the reflected wave is proved to be about 3π/4 by the numerical calculation.
基金the National Basic Research Program under the Grant 2005CB321703NCET and the National Natural Science Foundation of China(No.10431050,10576001).
文摘This paper presents a further numerical study of the interaction dynamics for solitary waves in a nonlinear Dirac model with scalar self-interaction,the Soler model,by using a fourth order accurate Runge-Kutta discontinuous Galerkin method.The phase plane method is employed for the first time to analyze the interaction of Dirac solitary waves and reveals that the relative phase of those waves may vary with the interaction.In general,the interaction of Dirac solitary waves depends on the initial phase shift.If two equal solitary waves are in-phase or out-of-phase initially,so are they during the interaction;if the initial phase shift is far away from 0 andπ,the relative phase begins to periodically evolve after a finite time.In the interaction of out-of-phase Dirac solitary waves,we can observe:(a)full repulsion in binary and ternary collisions,depending on the distance between initial waves;(b)repulsing first,attracting afterwards,and then collapse in binary and ternary collisions of initially resting two-humped waves;(c)one-overlap interaction and two-overlap interaction in ternary collisions of initially resting waves.