The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflect...The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflective conductive materials can effectively shield EMI,they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously.Herein,soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented.The devices consist of liquid metal(LM)layer and LM grid-patterned layer separated by a thin elastomeric film,fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer.The devices demonstrate high electromagnetic shielding effectiveness(SE)(SE_(T) of up to 75 dB)with low reflectance(SER of 1.5 dB at the resonant frequency)owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures.Remarkably,the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain(resonant frequency shift from 81.3 to 71.3 GHz@33%strain)and is also capable of retaining shielding effectiveness even after multiple strain cycles.This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics.展开更多
Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electroni...Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electronics,posing a major obstacle to the integra-tion of electronics.The innovation of integrating 3D-printed conformal shielding(c-SE)modules with packaging materials onto core electronics offers infinite possibilities to satisfy ideal SE func-tion without occupying additional space.Herein,the 3D printable carbon-based inks with various proportions of graphene and carbon nanotube nanoparticles are well-formulated by manipulating their rheological peculiarity.Accordingly,the free-constructed architectures with arbitrarily-customized structure and multifunctionality are created via 3D printing.In particular,the SE performance of 3D-printed frame is up to 61.4 dB,simultaneously accompanied with an ultralight architecture of 0.076 g cm^(-3) and a superhigh specific shielding of 802.4 dB cm3 g^(-1).Moreover,as a proof-of-concept,the 3D-printed c-SE module is in situ integrated into core electronics,successfully replacing the traditional metal-based module to afford multiple functions for electromagnetic compatibility and thermal dissipa-tion.Thus,this scientific innovation completely makes up the blank for assembling carbon-based c-SE modules and sheds a brilliant light on developing the next generation of high-performance shielding materials with arbitrarily-customized structure for integrated electronics.展开更多
The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In th...The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment.展开更多
The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here...The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs.展开更多
A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetrae...A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.展开更多
Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittan...Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.展开更多
Nowadays,the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health,so stretchable electromagnetic interference(EMI)shielding materials are highly demanded.Eleph...Nowadays,the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health,so stretchable electromagnetic interference(EMI)shielding materials are highly demanded.Elephant trunks are capable of grabbing fragile vegetation and tearing trees thanks not only to their muscles but also to their folded skins.Inspired by the wrinkled skin of the elephant trunks,herein,we propose a winkled conductive film based on single-walled carbon nanotubes(SWCNTs)for multifunctional EMI applications.The conductive film has a sandwich structure,which was prepared by coating SWCNTs on both sides of the stretched elastic latex cylindrical substrate.The shrinking-induced winkled conductive network could withstand up to 200%tensile strain.Typically,when the stretching direction is parallel to the polarization direction of the electric field,the total EMI shielding effectiveness could surprisingly increase from 38.4 to 52.7 dB at 200%tensile strain.It is mainly contributed by the increased connection of the SWCNTs.In addition,the film also has good Joule heating performance at several voltages,capable of releasing pains in injured joints.This unique property makes it possible for strain-adjustable multifunctional EMI shielding and wearable thermotherapy applications.展开更多
Lightweight,ultra-flexible,and robust crosslinked transition metal carbide(Ti3C2 MXene)coated polyimide(PI)(C-MXene@PI)porous composites are manufactured via a scalable dip-coating followed by chemical crosslinking ap...Lightweight,ultra-flexible,and robust crosslinked transition metal carbide(Ti3C2 MXene)coated polyimide(PI)(C-MXene@PI)porous composites are manufactured via a scalable dip-coating followed by chemical crosslinking approach.In addition to the hydrophobicity,anti-oxidation and extreme-temperature stability,efficient utilization of the intrinsic conductivity of MXene,the interfacial polarization between MXene and PI,and the micrometer-sized pores of the composite foams are achieved.Consequently,the composites show a satisfactory X-band electromagnetic interference(EMI)shielding effectiveness of 22.5 to 62.5 dB at a density of 28.7 to 48.7 mg cm−3,leading to an excellent surface-specific SE of 21,317 dB cm^(2)g^(−1).Moreover,the composite foams exhibit excellent electrothermal performance as flexible heaters in terms of a prominent,rapid reproducible,and stable electrothermal effect at low voltages and superior heat performance and more uniform heat distribution compared with the commercial heaters composed of alloy plates.Furthermore,the composite foams are well attached on a human body to check their electromechanical sensing performance,demonstrating the sensitive and reliable detection of human motions as wearable sensors.The excellent EMI shielding performance and multifunctionalities,along with the facile and easy-to-scalable manufacturing techniques,imply promising perspectives of the porous C-MXene@PI composites in next-generation flexible electronics,aerospace,and smart devices.展开更多
The rapid development of aerospace weapons and equipment,wireless base stations and 5G communication technologies has put forward newer and higher requirements for the comprehensive performances of polymer-based elect...The rapid development of aerospace weapons and equipment,wireless base stations and 5G communication technologies has put forward newer and higher requirements for the comprehensive performances of polymer-based electromagnetic interference(EMI)shielding composites.However,most of currently prepared polymer-based EMI shielding composites are still difficult to combine high performance and multi-functionality.In response to this,based on the research works of relevant researchers as well as our research group,three possible directions to break through the above bottlenecks are proposed,including construction of efficient conductive networks,optimization of multi-interfaces for lightweight and multifunction compatibility design.The future development trends in three directions are prospected,and it is hoped to provide certain theoretical basis and technical guidance for the preparation,research and development of polymer-based EMI shielding composites.展开更多
With the rapid development of fifth-generation mobile com-munication technology and wearable electronic devices,electromagnetic interference and radiation pollution caused by electromagnetic waves have attracted world...With the rapid development of fifth-generation mobile com-munication technology and wearable electronic devices,electromagnetic interference and radiation pollution caused by electromagnetic waves have attracted worldwide attention.Therefore,the design and development of highly efficient EMI shielding materials are of great importance.In this work,the three-dimensional graphene oxide(GO)with regular honeycomb structure(GH)is firstly constructed by sacrificial template and freeze-dry-ing methods.Then,the amino functionalized FeNi alloy particles(f-FeNi)are loaded on the GH skeleton followed by in-situ reduction to prepare rGH@FeNi aerogel.Finally,the rGH@FeNi/epoxy EMI shielding com-posites with regular honeycomb structure is obtained by vacuum-assisted impregnation of epoxy resin.Benefitting from the construction of regular honeycomb structure and electromagnetic synergistic effect,the rGH@FeNi/epoxy composites with a low rGH@FeNi mass fraction of 2.1 wt%(rGH and f-FeNi are 1.2 and 0.9 wt%,respectively)exhibit a high EMI shielding effectiveness(EMI SE)of 46 dB,which is 5.8 times of that(8 dB)for rGO/FeNi/epoxy composites with the same rGO/FeNi mass fraction.At the same time,the rGH@FeNi/epoxy composites also possess excellent thermal stability(heat-resistance index and temperature at the maximum decomposition rate are 179.1 and 389.0°C respectively)and mechanical properties(storage modulus is 8296.2 MPa).展开更多
Conductive hydrogels have potential applications in shielding electromagnetic(EM)radiation interference in deformable and wearable electronic devices,but usually suffer from poor environmental stability and stretching...Conductive hydrogels have potential applications in shielding electromagnetic(EM)radiation interference in deformable and wearable electronic devices,but usually suffer from poor environmental stability and stretching-induced shielding performance degradation.Although organohydrogels can improve the environmental stability of materials,their development is at the expense of reducing electrical conductivity and thus weakening EM interference shielding ability.Here,a MXene organohydrogel is prepared which is composed of MXene network for electron conduction,binary solvent channels for ion conduction,and abundant solvent-polymer-MXene interfaces for EM wave scattering.This organohydrogel possesses excellent anti-drying ability,low-temperature tolerance,stretchability,shape adaptability,adhesion and rapid self-healing ability.Two effective strategies have been proposed to solve the problems of current organohydrogel shielding materials.By reasonably controlling the MXene content and the glycerol-water ratio in the gel,MXene organohydrogel can exhibit exceptionally enhanced EM interference shielding performances compared to MXene hydrogel due to the increased physical cross-linking density of the gel.Moreover,MXene organohydrogel shows attractive stretching-enhanced interference effectiveness,caused by the connection and parallel arrangement of MXene nanosheets.This well-designed MXene organohydrogel has potential applications in shielding EM interference in deformable and wearable electronic devices.展开更多
With the widespread application of electronic communication technology,the resulting electromagnetic radiation pollution has been significantly increased.Metal matrix electromagnetic interference(EMI)shielding materia...With the widespread application of electronic communication technology,the resulting electromagnetic radiation pollution has been significantly increased.Metal matrix electromagnetic interference(EMI)shielding materials have disadvantages such as high density,easy corrosion,difficult processing and high price,etc.Polymer matrix EMI shielding composites possess light weight,corrosion resistance and easy processing.However,the current polymer matrix composites present relatively low electrical conductivity and poor EMI shielding performance.This review firstly discusses the key concept,loss mechanism and test method of EMI shielding.Then the current development status of EMI shielding materials is summarized,and the research progress of polymer matrix EMI shielding composites with different structures is illustrated,especially for their preparation methods and evaluation.Finally,the corresponding key scientific and technical problems are proposed,and their development trend is also prospected.展开更多
Although electrically conductive and hydrophilic MXene sheets are promising for multifunctional fibers and electronic textiles,it is still a challenge to simultaneously enhance both conductivity and mechanical propert...Although electrically conductive and hydrophilic MXene sheets are promising for multifunctional fibers and electronic textiles,it is still a challenge to simultaneously enhance both conductivity and mechanical properties of MXene fibers because of the high rigidity of MXene sheets and insufficient inter-sheet interactions.Herein,we demonstrate a core-shell wet-spinning methodology for fabricating highly conductive,super-tough,ultra-strong,and environmentally stable Ti_(3)C_(2)T_(x) MXene-based core-shell fibers with conductive MXene cores and tough aramid nanofiber(ANF)shells.The highly orientated and low-defect structure endows the ANF@MXene core-shell fiber with supertoughness of~48.1 MJ m^(-3),high strength of~502.9 MPa,and high conductivity of~3.0×10^(5)S m^(-1).The super-tough and conductive ANF@MXene fibers can be woven into textiles,exhibiting an excellent electromagnetic interference(EMI)shielding efficiency of 83.4 dB at a small thickness of 213μm.Importantly,the protection of the ANF shells provides the fibers with satisfactory cyclic stability under dynamic stretching and bending,and excellent resistance to acid,alkali,seawater,cryogenic and high temperatures,and fire.The oxidation resistance of the fibers is demonstrated by their wellmaintained EMI shielding performances.The multifunctional core-shell fibers would be highly promising in the fields of EMI shielding textiles,wearable electronics and aerospace.展开更多
Construction of advanced electromagnetic interference(EMI)shielding materials with miniaturized,programmable structure and low reflection are promising but challenging.Herein,an integrated transition-metal carbides/ca...Construction of advanced electromagnetic interference(EMI)shielding materials with miniaturized,programmable structure and low reflection are promising but challenging.Herein,an integrated transition-metal carbides/carbon nanotube/polyimide(gradient-conductive MXene/CNT/PI,GCMCP)aerogel frame with hierarchical porous structure and gradient-conductivity has been constructed to achieve EMI shielding with ultra-low reflection.The gradient-conductive structures are obtained by continuous 3D printing of MXene/CNT/poly(amic acid)inks with different CNT contents,where the slightly conductive top layer serves as EM absorption layer and the highly conductive bottom layer as reflection layer.In addition,the hierarchical porous structure could extend the EM dissipation path and dissipate EM by multiple reflections.Consequently,the GCMCP aerogel frames exhibit an excellent average EMI shielding efficiency(68.2 dB)and low reflection(R=0.23).Furthermore,the GCMCP aerogel frames with miniaturized and programmable structures can be used as EMI shielding gaskets and effectively block wireless power transmission,which shows a prosperous application prospect in defense industry and aerospace.展开更多
Lightweight,flexibility,and low thickness are urgent requirements for next-generation high-performance electromagnetic interference(EMI)shielding materials for catering to the demand for smart and wearable electronic ...Lightweight,flexibility,and low thickness are urgent requirements for next-generation high-performance electromagnetic interference(EMI)shielding materials for catering to the demand for smart and wearable electronic devices.Although several efforts have focused on constructing porous and flexible conductive films or aerogels,few studies have achieved a balance in terms of density,thickness,flexibility,and EMI shielding effectiveness(SE).Herein,an ultrathin,lightweight,and flexible carbon nanotube(CNT)buckypaper enhanced using MXenes(Ti3C2Tx)for high-performance EMI shielding is synthesized through a facile electrophoretic deposition process.The obtained Ti3C2Tx@CNT hybrid buckypaper exhibits an outstanding EMI SE of 60.5 dB in the X-band at 100μm.The hybrid buckypaper with an MXene content of 49.4 wt%exhibits an EMI SE of 50.4 dB in the X-band with a thickness of only 15μm,which is 105%higher than that of pristine CNT buckypaper.Furthermore,an average specific SE value of 5.7×10^(4) dB cm^(2) g^(−1) is exhibited in the 5-μm hybrid buckypaper.Thus,this assembly process proves promising for the construction of ultrathin,flexible,and high-performance EMI shielding films for application in electronic devices and wireless communications.展开更多
The highly integrated and miniaturized next-generation electronic products call for high-performance electromagnetic interference(EMI)shielding materials to assure the normal operation of their closely assembled compo...The highly integrated and miniaturized next-generation electronic products call for high-performance electromagnetic interference(EMI)shielding materials to assure the normal operation of their closely assembled components.However,the most current techniques are not adequate for the fabrication of shielding materials with programmable structure and controllable shielding efficiency.Herein,we demonstrate the direct ink writing of robust and highly conductive Ti3C2Tx MXene frames with customizable structures by using MXene/AlOOH inks for tunable EMI shielding and electromagnetic wave-induced thermochromism applications.The as-printed frames are reinforced by immersing in AlCl_(3)/HCl solution to remove the electrically insulating AlOOH nanoparticles,as well as cross-link the MXene sheets and fuse the filament interfaces with aluminum ions.After freeze-drying,the resultant robust and porous MXene frames exhibit tunable EMI shielding efficiencies in the range of 25-80 dB with the highest electrical conductivity of 5323 S m−1.Furthermore,an electromagnetic wave-induced thermochromic MXene pattern is assembled by coating and curing with thermochromic polydimethylsiloxane on a printed MXene pattern,and its color can be changed from blue to red under the high-intensity electromagnetic irradiation.This work demonstrates a direct ink printing of customizable EMI frames and patterns for tuning EMI shielding efficiency and visualizing electromagnetic waves.展开更多
Ultrathin,lightweight,and flexible aligned single-walled carbon nanotube(SWCNT)films are fabricated by a facile,environmentally friendly,and scalable printing methodology.The aligned pattern and outstanding intrinsic ...Ultrathin,lightweight,and flexible aligned single-walled carbon nanotube(SWCNT)films are fabricated by a facile,environmentally friendly,and scalable printing methodology.The aligned pattern and outstanding intrinsic properties render“metal-like”thermal conductivity of the SWCNT films,as well as excellent mechanical strength,flexibility,and hydrophobicity.Further,the aligned cellular microstructure promotes the electromagnetic interference(EMI)shielding ability of the SWCNTs,leading to excellent shielding effectiveness(SE)of~39 to 90 dB despite a density of only~0.6 g cm^(−3) at thicknesses of merely 1.5-24μm,respectively.An ultrahigh thickness-specific SE of 25693 dB mm^(−1) and an unprecedented normalized specific SE of 428222 dB cm^(2)g^(−1) are accomplished by the freestanding SWCNT films,significantly surpassing previously reported shielding materials.In addition to an EMI SE greater than 54 dB in an ultra-broadband frequency range of around 400 GHz,the films demonstrate excellent EMI shielding stability and reliability when subjected to mechanical deformation,chemical(acid/alkali/organic solvent)corrosion,and high-/low-temperature environments.The novel printed SWCNT films offer significant potential for practical applications in the aerospace,defense,precision components,and smart wearable electronics industries.展开更多
Electromagnetic interference(EMI)shielding materials with excellent flexibility and mechanical properties and outstanding thermal conductivity have become a hot topic of research in functional composites.In this study...Electromagnetic interference(EMI)shielding materials with excellent flexibility and mechanical properties and outstanding thermal conductivity have become a hot topic of research in functional composites.In this study,the“sol-gel-film conversion technique”is used to assemble polyetherimidefunctionalized Ti_(3)C_(2)T_(x) nanosheets(f-Ti_(3)C_(2)T_(x))with poly(p-phenylene-2,6-benzobisoxazole)(PBO)nanofibers(PNFs),followed by dialysis and vacuum drying to prepare f-Ti_(3)C_(2)T_(x)/PNF films with lamellar structures.When the loading of f-Ti_(3)C_(2)T_(x) is 70 wt%,the f-Ti_(3)C_(2)T_(x)/PNF film presents optimal comprehensive properties,with an EMI shielding effectiveness(SE)of 35 dB and a specific SE/thickness((SSE,SE/density)/t)of 8211 dB cm^(2)/g,a tensile strength of 125.1 MPa,an in-plane thermal conductivity coefficient(λ)of 5.82 W/(m K),and electrical conductivity of 1943 S/m.After repeated folding for 10,000 cycles,the EMI SE and the tensile strength of f-Ti_(3)C_(2)T_(x)/PNFs films still remain 33.4 dB and 116.1 MPa,respectively.Additionally,the f-Ti_(3)C_(2)T_(x)/PNF film also shows excellent thermal stability,flame retardancy,and structural stability.This would provide a novel method for the design and fabrication of multifunctional composite films and considerably expand the applications of MXene-and PNF-based composites in the fields of EMI shielding and thermal management.展开更多
High-efficiency electromagnetic interference(EMI)shielding materials are of great importance for electronic equipment reliability,information security and human health.In this work,bidirectional aligned Ti_(3)C_(2)T_(...High-efficiency electromagnetic interference(EMI)shielding materials are of great importance for electronic equipment reliability,information security and human health.In this work,bidirectional aligned Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/CNF aerogels(BTFCA)were firstly assembled by bidirectional freezing and freeze-drying technique,and the BTFCA/epoxy nanocomposites with long-range aligned lamellar structures were then prepared by vacuum-assisted impregnation of epoxy resins.Benefitting from the successful construction of bidirectional aligned three-dimensional conductive networks and electromagnetic synergistic effect,when the mass fraction of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4) are 2.96 and 1.48 wt%,BTFCA/epoxy nanocomposites show outstanding EMI shield-ing effectiveness of 79 dB,about 10 times of that of blended Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/epoxy(8 dB)nanocomposites with the same loadings of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4).Meantime,the corresponding BTFCA/epoxy nanocomposites also present excellent thermal stability(T_(heat-resistance index) of 198.7℃)and mechanical properties(storage modulus of 9902.1 MPa,Young’s modulus of 4.51 GPa and hardness of 0.34 GPa).Our fabricated BTFCA/epoxy nanocomposites would greatly expand the applications of MXene and epoxy resins in the fields of information security,aerospace and weapon manufacturing,etc.展开更多
Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference(EMI) shielding. With the aids of Kevla...Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference(EMI) shielding. With the aids of Kevlar polyanionic chains, thermoplastic polyurethane(TPU) foams reinforced by aramid nanofibers(ANF) with adjustable pore-size distribution were successfully obtained via a nonsolvent-induced phase separation. In this regard, the most outstanding result is the in situ formation of ANF in TPU foams after protonation of Kevlar polyanion during the NIPS process. Furthermore, in situ growth of copper nanoparticles(Cu NPs) on TPU/ANF foams was performed according to the electroless deposition by using the tiny amount of pre-blended Ti_(3)C_(2)T_(x) MXene as reducing agents. Particularly, the existence of Cu NPs layers significantly promoted the storage modulus in 2,932% increments, and the well-designed TPU/ANF/Ti_(3)C_(2)T_(x) MXene(PAM-Cu) composite foams showed distinguished compressive cycle stability. Taking virtues of the highly ordered and elastic porous architectures, the PAM-Cu foams were utilized as piezoresistive sensor exhibiting board compressive interval of 0–344.5 kPa(50% strain) with good sensitivity at 0.46 kPa^(-1). Meanwhile,the PAM-Cu foams displayed remarkable EMI shielding effectiveness at 79.09 dB in X band. This work provides an ideal strategy to fabricate highly ordered TPU foams with outstanding elastic recovery and excellent EMI shielding performance, which can be used as a promising candidate in integration of satisfactory piezoresistive sensor and EMI shielding applications for human–machine interfaces.展开更多
基金supported by National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(RS-2024-00335216,RS-2024-00407084 and RS-2023-00207836)Korea Environment Industry&Technology Institute(KEITI)through the R&D Project of Recycling Development for Future Waste Resources Program,funded by the Korea Ministry of Environment(MOE)(2022003500003).
文摘The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflective conductive materials can effectively shield EMI,they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously.Herein,soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented.The devices consist of liquid metal(LM)layer and LM grid-patterned layer separated by a thin elastomeric film,fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer.The devices demonstrate high electromagnetic shielding effectiveness(SE)(SE_(T) of up to 75 dB)with low reflectance(SER of 1.5 dB at the resonant frequency)owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures.Remarkably,the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain(resonant frequency shift from 81.3 to 71.3 GHz@33%strain)and is also capable of retaining shielding effectiveness even after multiple strain cycles.This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics.
基金This work is financially supported by the National Natural Science Foundation of China(52303036)the Natural Science Foundation of Guangxi Province(2020GXNSFAA297028)+4 种基金the Guangxi Science and Technology Base and Talent Special Project(GUIKE AD23026179)the International Science&Technology Cooperation Project of Chengdu(2021-GH03-00009-HZ)the Program of Innovative Research Team for Young Scientists of Sichuan Province(22CXTD0019)the Natural Science Foundation of Sichuan Province(2023NSFSC0986)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(Sklpme2023-3-18).
文摘Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electronics,posing a major obstacle to the integra-tion of electronics.The innovation of integrating 3D-printed conformal shielding(c-SE)modules with packaging materials onto core electronics offers infinite possibilities to satisfy ideal SE func-tion without occupying additional space.Herein,the 3D printable carbon-based inks with various proportions of graphene and carbon nanotube nanoparticles are well-formulated by manipulating their rheological peculiarity.Accordingly,the free-constructed architectures with arbitrarily-customized structure and multifunctionality are created via 3D printing.In particular,the SE performance of 3D-printed frame is up to 61.4 dB,simultaneously accompanied with an ultralight architecture of 0.076 g cm^(-3) and a superhigh specific shielding of 802.4 dB cm3 g^(-1).Moreover,as a proof-of-concept,the 3D-printed c-SE module is in situ integrated into core electronics,successfully replacing the traditional metal-based module to afford multiple functions for electromagnetic compatibility and thermal dissipa-tion.Thus,this scientific innovation completely makes up the blank for assembling carbon-based c-SE modules and sheds a brilliant light on developing the next generation of high-performance shielding materials with arbitrarily-customized structure for integrated electronics.
基金This work was supported by the National Natural Science Foundation of China(No.U21A2093)the Anhui Provincial Natural Science Foundation(No.2308085QE146)the National Natural Science Foundation of Jiangsu Province(No.BK20210894).
文摘The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment.
基金the National Natural Science Foundation of China[grant numbers 52203038,52173036 and 52073107]the National Key Technology R&D Program of China[grant number 2022YFC3901904,2022YFC3901903,and 2020YFB1709301]the Central University Basic Research Fund of China[grant number 2021XXJS035].
文摘The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs.
基金the China Scholarship Council(2021)the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-249-03”.
文摘A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.523712475,2072415 and 62101352)Shenzhen Science and Technology Program(RCBS20210706092343016).
文摘Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.
基金financially supported by the National Natural Science Foundation of China(52073302,52103311)Hunan Provincial Natural Science Foundation for Distinguished Young Scholars(No.14JJ1001).
文摘Nowadays,the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health,so stretchable electromagnetic interference(EMI)shielding materials are highly demanded.Elephant trunks are capable of grabbing fragile vegetation and tearing trees thanks not only to their muscles but also to their folded skins.Inspired by the wrinkled skin of the elephant trunks,herein,we propose a winkled conductive film based on single-walled carbon nanotubes(SWCNTs)for multifunctional EMI applications.The conductive film has a sandwich structure,which was prepared by coating SWCNTs on both sides of the stretched elastic latex cylindrical substrate.The shrinking-induced winkled conductive network could withstand up to 200%tensile strain.Typically,when the stretching direction is parallel to the polarization direction of the electric field,the total EMI shielding effectiveness could surprisingly increase from 38.4 to 52.7 dB at 200%tensile strain.It is mainly contributed by the increased connection of the SWCNTs.In addition,the film also has good Joule heating performance at several voltages,capable of releasing pains in injured joints.This unique property makes it possible for strain-adjustable multifunctional EMI shielding and wearable thermotherapy applications.
基金support of the Qilu Young Scholar Program of Shandong University(No.31370082163127)the authors acknowledge funding from the support from the Chinese Scholarship Council(to NW,project#201709370040).
文摘Lightweight,ultra-flexible,and robust crosslinked transition metal carbide(Ti3C2 MXene)coated polyimide(PI)(C-MXene@PI)porous composites are manufactured via a scalable dip-coating followed by chemical crosslinking approach.In addition to the hydrophobicity,anti-oxidation and extreme-temperature stability,efficient utilization of the intrinsic conductivity of MXene,the interfacial polarization between MXene and PI,and the micrometer-sized pores of the composite foams are achieved.Consequently,the composites show a satisfactory X-band electromagnetic interference(EMI)shielding effectiveness of 22.5 to 62.5 dB at a density of 28.7 to 48.7 mg cm−3,leading to an excellent surface-specific SE of 21,317 dB cm^(2)g^(−1).Moreover,the composite foams exhibit excellent electrothermal performance as flexible heaters in terms of a prominent,rapid reproducible,and stable electrothermal effect at low voltages and superior heat performance and more uniform heat distribution compared with the commercial heaters composed of alloy plates.Furthermore,the composite foams are well attached on a human body to check their electromechanical sensing performance,demonstrating the sensitive and reliable detection of human motions as wearable sensors.The excellent EMI shielding performance and multifunctionalities,along with the facile and easy-to-scalable manufacturing techniques,imply promising perspectives of the porous C-MXene@PI composites in next-generation flexible electronics,aerospace,and smart devices.
基金The authors are grateful for the supports from the National Natural Science Foundation of China(U21A2093)Y.L.Zhang would like to thank the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2021107)+1 种基金This work is also financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin ScholarsOpen access funding provided by Shanghai Jiao Tong University
文摘The rapid development of aerospace weapons and equipment,wireless base stations and 5G communication technologies has put forward newer and higher requirements for the comprehensive performances of polymer-based electromagnetic interference(EMI)shielding composites.However,most of currently prepared polymer-based EMI shielding composites are still difficult to combine high performance and multi-functionality.In response to this,based on the research works of relevant researchers as well as our research group,three possible directions to break through the above bottlenecks are proposed,including construction of efficient conductive networks,optimization of multi-interfaces for lightweight and multifunction compatibility design.The future development trends in three directions are prospected,and it is hoped to provide certain theoretical basis and technical guidance for the preparation,research and development of polymer-based EMI shielding composites.
基金supports from the National Natural Science Foundation of China(U21A2093 and 51903145)Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(2019JC-11)and Fundamental Research Funds for the Central Universities(D5000210627)This work is also financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.
文摘With the rapid development of fifth-generation mobile com-munication technology and wearable electronic devices,electromagnetic interference and radiation pollution caused by electromagnetic waves have attracted worldwide attention.Therefore,the design and development of highly efficient EMI shielding materials are of great importance.In this work,the three-dimensional graphene oxide(GO)with regular honeycomb structure(GH)is firstly constructed by sacrificial template and freeze-dry-ing methods.Then,the amino functionalized FeNi alloy particles(f-FeNi)are loaded on the GH skeleton followed by in-situ reduction to prepare rGH@FeNi aerogel.Finally,the rGH@FeNi/epoxy EMI shielding com-posites with regular honeycomb structure is obtained by vacuum-assisted impregnation of epoxy resin.Benefitting from the construction of regular honeycomb structure and electromagnetic synergistic effect,the rGH@FeNi/epoxy composites with a low rGH@FeNi mass fraction of 2.1 wt%(rGH and f-FeNi are 1.2 and 0.9 wt%,respectively)exhibit a high EMI shielding effectiveness(EMI SE)of 46 dB,which is 5.8 times of that(8 dB)for rGO/FeNi/epoxy composites with the same rGO/FeNi mass fraction.At the same time,the rGH@FeNi/epoxy composites also possess excellent thermal stability(heat-resistance index and temperature at the maximum decomposition rate are 179.1 and 389.0°C respectively)and mechanical properties(storage modulus is 8296.2 MPa).
基金This work was financially supported by Beijing Natural Science Foundation(2212033)National Natural Science Foundation of China(51971008,U1832138,51731002 and 51671010)+1 种基金the Fundamental Research Funds for the Central UniversitiesOpen access funding provided by Shanghai Jiao Tong University
文摘Conductive hydrogels have potential applications in shielding electromagnetic(EM)radiation interference in deformable and wearable electronic devices,but usually suffer from poor environmental stability and stretching-induced shielding performance degradation.Although organohydrogels can improve the environmental stability of materials,their development is at the expense of reducing electrical conductivity and thus weakening EM interference shielding ability.Here,a MXene organohydrogel is prepared which is composed of MXene network for electron conduction,binary solvent channels for ion conduction,and abundant solvent-polymer-MXene interfaces for EM wave scattering.This organohydrogel possesses excellent anti-drying ability,low-temperature tolerance,stretchability,shape adaptability,adhesion and rapid self-healing ability.Two effective strategies have been proposed to solve the problems of current organohydrogel shielding materials.By reasonably controlling the MXene content and the glycerol-water ratio in the gel,MXene organohydrogel can exhibit exceptionally enhanced EM interference shielding performances compared to MXene hydrogel due to the increased physical cross-linking density of the gel.Moreover,MXene organohydrogel shows attractive stretching-enhanced interference effectiveness,caused by the connection and parallel arrangement of MXene nanosheets.This well-designed MXene organohydrogel has potential applications in shielding EM interference in deformable and wearable electronic devices.
基金The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China(51903145 and 51973173)Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(2019JC-11)+1 种基金Fundamental Research Funds for the Central Universities(D5000210627)This work is also financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.
文摘With the widespread application of electronic communication technology,the resulting electromagnetic radiation pollution has been significantly increased.Metal matrix electromagnetic interference(EMI)shielding materials have disadvantages such as high density,easy corrosion,difficult processing and high price,etc.Polymer matrix EMI shielding composites possess light weight,corrosion resistance and easy processing.However,the current polymer matrix composites present relatively low electrical conductivity and poor EMI shielding performance.This review firstly discusses the key concept,loss mechanism and test method of EMI shielding.Then the current development status of EMI shielding materials is summarized,and the research progress of polymer matrix EMI shielding composites with different structures is illustrated,especially for their preparation methods and evaluation.Finally,the corresponding key scientific and technical problems are proposed,and their development trend is also prospected.
基金Financial support from the National Natural Science Foundation of China(51922020,52090034)the Fundamental Research Funds for the Central Universities(BHYC1707B,XK1802-2)。
文摘Although electrically conductive and hydrophilic MXene sheets are promising for multifunctional fibers and electronic textiles,it is still a challenge to simultaneously enhance both conductivity and mechanical properties of MXene fibers because of the high rigidity of MXene sheets and insufficient inter-sheet interactions.Herein,we demonstrate a core-shell wet-spinning methodology for fabricating highly conductive,super-tough,ultra-strong,and environmentally stable Ti_(3)C_(2)T_(x) MXene-based core-shell fibers with conductive MXene cores and tough aramid nanofiber(ANF)shells.The highly orientated and low-defect structure endows the ANF@MXene core-shell fiber with supertoughness of~48.1 MJ m^(-3),high strength of~502.9 MPa,and high conductivity of~3.0×10^(5)S m^(-1).The super-tough and conductive ANF@MXene fibers can be woven into textiles,exhibiting an excellent electromagnetic interference(EMI)shielding efficiency of 83.4 dB at a small thickness of 213μm.Importantly,the protection of the ANF shells provides the fibers with satisfactory cyclic stability under dynamic stretching and bending,and excellent resistance to acid,alkali,seawater,cryogenic and high temperatures,and fire.The oxidation resistance of the fibers is demonstrated by their wellmaintained EMI shielding performances.The multifunctional core-shell fibers would be highly promising in the fields of EMI shielding textiles,wearable electronics and aerospace.
基金the National Natural Science Foundation of China(52073053,52233006)Young Elite Scientists Sponsorship Program by CAST(2021QNRC001)+3 种基金Shanghai Rising-Star Program(21QA1400300)Innovation Program of Shanghai Municipal Education Commission(2021-01-0700-03-E00108)Science and Technology Commission of Shanghai Municipality(20520741100)China Postdoctoral Science Foundation(2021M690596)。
文摘Construction of advanced electromagnetic interference(EMI)shielding materials with miniaturized,programmable structure and low reflection are promising but challenging.Herein,an integrated transition-metal carbides/carbon nanotube/polyimide(gradient-conductive MXene/CNT/PI,GCMCP)aerogel frame with hierarchical porous structure and gradient-conductivity has been constructed to achieve EMI shielding with ultra-low reflection.The gradient-conductive structures are obtained by continuous 3D printing of MXene/CNT/poly(amic acid)inks with different CNT contents,where the slightly conductive top layer serves as EM absorption layer and the highly conductive bottom layer as reflection layer.In addition,the hierarchical porous structure could extend the EM dissipation path and dissipate EM by multiple reflections.Consequently,the GCMCP aerogel frames exhibit an excellent average EMI shielding efficiency(68.2 dB)and low reflection(R=0.23).Furthermore,the GCMCP aerogel frames with miniaturized and programmable structures can be used as EMI shielding gaskets and effectively block wireless power transmission,which shows a prosperous application prospect in defense industry and aerospace.
基金National Natural Science Foundation of China(Grant Nos.52072415,52072306 and 51772335)the Science and Technology Program of Guangzhou(201904010450)Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments(6142905192509).
文摘Lightweight,flexibility,and low thickness are urgent requirements for next-generation high-performance electromagnetic interference(EMI)shielding materials for catering to the demand for smart and wearable electronic devices.Although several efforts have focused on constructing porous and flexible conductive films or aerogels,few studies have achieved a balance in terms of density,thickness,flexibility,and EMI shielding effectiveness(SE).Herein,an ultrathin,lightweight,and flexible carbon nanotube(CNT)buckypaper enhanced using MXenes(Ti3C2Tx)for high-performance EMI shielding is synthesized through a facile electrophoretic deposition process.The obtained Ti3C2Tx@CNT hybrid buckypaper exhibits an outstanding EMI SE of 60.5 dB in the X-band at 100μm.The hybrid buckypaper with an MXene content of 49.4 wt%exhibits an EMI SE of 50.4 dB in the X-band with a thickness of only 15μm,which is 105%higher than that of pristine CNT buckypaper.Furthermore,an average specific SE value of 5.7×10^(4) dB cm^(2) g^(−1) is exhibited in the 5-μm hybrid buckypaper.Thus,this assembly process proves promising for the construction of ultrathin,flexible,and high-performance EMI shielding films for application in electronic devices and wireless communications.
基金support from the National Natural Science Foundation of China(51922020,52090034)the Fundamental Research Funds for the Central Universities(BHYC1707B)。
文摘The highly integrated and miniaturized next-generation electronic products call for high-performance electromagnetic interference(EMI)shielding materials to assure the normal operation of their closely assembled components.However,the most current techniques are not adequate for the fabrication of shielding materials with programmable structure and controllable shielding efficiency.Herein,we demonstrate the direct ink writing of robust and highly conductive Ti3C2Tx MXene frames with customizable structures by using MXene/AlOOH inks for tunable EMI shielding and electromagnetic wave-induced thermochromism applications.The as-printed frames are reinforced by immersing in AlCl_(3)/HCl solution to remove the electrically insulating AlOOH nanoparticles,as well as cross-link the MXene sheets and fuse the filament interfaces with aluminum ions.After freeze-drying,the resultant robust and porous MXene frames exhibit tunable EMI shielding efficiencies in the range of 25-80 dB with the highest electrical conductivity of 5323 S m−1.Furthermore,an electromagnetic wave-induced thermochromic MXene pattern is assembled by coating and curing with thermochromic polydimethylsiloxane on a printed MXene pattern,and its color can be changed from blue to red under the high-intensity electromagnetic irradiation.This work demonstrates a direct ink printing of customizable EMI frames and patterns for tuning EMI shielding efficiency and visualizing electromagnetic waves.
基金support of National Key R&D Program of China (2021YFB3502500)Provincial Key Research and Development Program of Shandong (2019JZZY010312, 2021ZLGX01)+4 种基金Natural Science Foundation of Shandong Province (2022HYYQ-014)New 20 Funded Programs for Universities of Jinan (2021GXRC036)Qilu Young Scholar Program of Shandong University (31370082163127)the assistance of Shandong University Testing and Manufacturing Center for Advanced Materialssupport from the National Science Foundation Engineering Research Center for Power Optimization of Electro Thermal Systems (POETS) under Grant No. EEC 1449548.
文摘Ultrathin,lightweight,and flexible aligned single-walled carbon nanotube(SWCNT)films are fabricated by a facile,environmentally friendly,and scalable printing methodology.The aligned pattern and outstanding intrinsic properties render“metal-like”thermal conductivity of the SWCNT films,as well as excellent mechanical strength,flexibility,and hydrophobicity.Further,the aligned cellular microstructure promotes the electromagnetic interference(EMI)shielding ability of the SWCNTs,leading to excellent shielding effectiveness(SE)of~39 to 90 dB despite a density of only~0.6 g cm^(−3) at thicknesses of merely 1.5-24μm,respectively.An ultrahigh thickness-specific SE of 25693 dB mm^(−1) and an unprecedented normalized specific SE of 428222 dB cm^(2)g^(−1) are accomplished by the freestanding SWCNT films,significantly surpassing previously reported shielding materials.In addition to an EMI SE greater than 54 dB in an ultra-broadband frequency range of around 400 GHz,the films demonstrate excellent EMI shielding stability and reliability when subjected to mechanical deformation,chemical(acid/alkali/organic solvent)corrosion,and high-/low-temperature environments.The novel printed SWCNT films offer significant potential for practical applications in the aerospace,defense,precision components,and smart wearable electronics industries.
基金The authors are grateful for the support of and funding from the Foundation of National Natural Science Foundation of China(51903145 and 51973173)the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(2019JC-11)+1 种基金Fundamental Research Funds for the Central Universities(D5000210627)L.Wang is grateful to the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX202053).
文摘Electromagnetic interference(EMI)shielding materials with excellent flexibility and mechanical properties and outstanding thermal conductivity have become a hot topic of research in functional composites.In this study,the“sol-gel-film conversion technique”is used to assemble polyetherimidefunctionalized Ti_(3)C_(2)T_(x) nanosheets(f-Ti_(3)C_(2)T_(x))with poly(p-phenylene-2,6-benzobisoxazole)(PBO)nanofibers(PNFs),followed by dialysis and vacuum drying to prepare f-Ti_(3)C_(2)T_(x)/PNF films with lamellar structures.When the loading of f-Ti_(3)C_(2)T_(x) is 70 wt%,the f-Ti_(3)C_(2)T_(x)/PNF film presents optimal comprehensive properties,with an EMI shielding effectiveness(SE)of 35 dB and a specific SE/thickness((SSE,SE/density)/t)of 8211 dB cm^(2)/g,a tensile strength of 125.1 MPa,an in-plane thermal conductivity coefficient(λ)of 5.82 W/(m K),and electrical conductivity of 1943 S/m.After repeated folding for 10,000 cycles,the EMI SE and the tensile strength of f-Ti_(3)C_(2)T_(x)/PNFs films still remain 33.4 dB and 116.1 MPa,respectively.Additionally,the f-Ti_(3)C_(2)T_(x)/PNF film also shows excellent thermal stability,flame retardancy,and structural stability.This would provide a novel method for the design and fabrication of multifunctional composite films and considerably expand the applications of MXene-and PNF-based composites in the fields of EMI shielding and thermal management.
基金The authors are grateful for the supports from the National Natural Science Foundation of China(U21A2093 and 52203100)Y.L.Zhang would like to thank the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2021107)。
文摘High-efficiency electromagnetic interference(EMI)shielding materials are of great importance for electronic equipment reliability,information security and human health.In this work,bidirectional aligned Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/CNF aerogels(BTFCA)were firstly assembled by bidirectional freezing and freeze-drying technique,and the BTFCA/epoxy nanocomposites with long-range aligned lamellar structures were then prepared by vacuum-assisted impregnation of epoxy resins.Benefitting from the successful construction of bidirectional aligned three-dimensional conductive networks and electromagnetic synergistic effect,when the mass fraction of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4) are 2.96 and 1.48 wt%,BTFCA/epoxy nanocomposites show outstanding EMI shield-ing effectiveness of 79 dB,about 10 times of that of blended Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/epoxy(8 dB)nanocomposites with the same loadings of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4).Meantime,the corresponding BTFCA/epoxy nanocomposites also present excellent thermal stability(T_(heat-resistance index) of 198.7℃)and mechanical properties(storage modulus of 9902.1 MPa,Young’s modulus of 4.51 GPa and hardness of 0.34 GPa).Our fabricated BTFCA/epoxy nanocomposites would greatly expand the applications of MXene and epoxy resins in the fields of information security,aerospace and weapon manufacturing,etc.
基金financially sponsored by the Science and Technology Commission of Shanghai Municipality (20230742300 and 18595800700)Key Laboratory of Resource Chemistry, Ministry of Education (KLRC_ME2103)the project of “joint assignment” in Shanghai University led by Prof. Tongyue Gao from School of Mechatronic Engineering and Automation。
文摘Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference(EMI) shielding. With the aids of Kevlar polyanionic chains, thermoplastic polyurethane(TPU) foams reinforced by aramid nanofibers(ANF) with adjustable pore-size distribution were successfully obtained via a nonsolvent-induced phase separation. In this regard, the most outstanding result is the in situ formation of ANF in TPU foams after protonation of Kevlar polyanion during the NIPS process. Furthermore, in situ growth of copper nanoparticles(Cu NPs) on TPU/ANF foams was performed according to the electroless deposition by using the tiny amount of pre-blended Ti_(3)C_(2)T_(x) MXene as reducing agents. Particularly, the existence of Cu NPs layers significantly promoted the storage modulus in 2,932% increments, and the well-designed TPU/ANF/Ti_(3)C_(2)T_(x) MXene(PAM-Cu) composite foams showed distinguished compressive cycle stability. Taking virtues of the highly ordered and elastic porous architectures, the PAM-Cu foams were utilized as piezoresistive sensor exhibiting board compressive interval of 0–344.5 kPa(50% strain) with good sensitivity at 0.46 kPa^(-1). Meanwhile,the PAM-Cu foams displayed remarkable EMI shielding effectiveness at 79.09 dB in X band. This work provides an ideal strategy to fabricate highly ordered TPU foams with outstanding elastic recovery and excellent EMI shielding performance, which can be used as a promising candidate in integration of satisfactory piezoresistive sensor and EMI shielding applications for human–machine interfaces.