期刊文献+
共找到146篇文章
< 1 2 8 >
每页显示 20 50 100
Liquid Metal Grid Patterned Thin Film Devices Toward Absorption‑Dominant and Strain‑Tunable Electromagnetic Interference Shielding
1
作者 Yuwen Wei Priyanuj Bhuyan +9 位作者 Suk Jin Kwon Sihyun Kim Yejin Bae Mukesh Singh Duy Thanh Tran Minjeong Ha Kwang‑Un Jeong Xing Ma Byeongjin Park Sungjune Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期541-553,共13页
The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflect... The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflective conductive materials can effectively shield EMI,they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously.Herein,soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented.The devices consist of liquid metal(LM)layer and LM grid-patterned layer separated by a thin elastomeric film,fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer.The devices demonstrate high electromagnetic shielding effectiveness(SE)(SE_(T) of up to 75 dB)with low reflectance(SER of 1.5 dB at the resonant frequency)owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures.Remarkably,the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain(resonant frequency shift from 81.3 to 71.3 GHz@33%strain)and is also capable of retaining shielding effectiveness even after multiple strain cycles.This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics. 展开更多
关键词 Absorption-dominant electromagnetic interference shielding Liquid metals Soft and stretchable electronics Thin film devices Tunable electromagnetic interference shielding
下载PDF
3D‑Printed Carbon‑Based Conformal Electromagnetic Interference Shielding Module for Integrated Electronics 被引量:4
2
作者 Shaohong Shi Yuheng Jiang +5 位作者 Hao Ren Siwen Deng Jianping Sun Fangchao Cheng Jingjing Jing Yinghong Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期87-101,共15页
Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electroni... Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electronics,posing a major obstacle to the integra-tion of electronics.The innovation of integrating 3D-printed conformal shielding(c-SE)modules with packaging materials onto core electronics offers infinite possibilities to satisfy ideal SE func-tion without occupying additional space.Herein,the 3D printable carbon-based inks with various proportions of graphene and carbon nanotube nanoparticles are well-formulated by manipulating their rheological peculiarity.Accordingly,the free-constructed architectures with arbitrarily-customized structure and multifunctionality are created via 3D printing.In particular,the SE performance of 3D-printed frame is up to 61.4 dB,simultaneously accompanied with an ultralight architecture of 0.076 g cm^(-3) and a superhigh specific shielding of 802.4 dB cm3 g^(-1).Moreover,as a proof-of-concept,the 3D-printed c-SE module is in situ integrated into core electronics,successfully replacing the traditional metal-based module to afford multiple functions for electromagnetic compatibility and thermal dissipa-tion.Thus,this scientific innovation completely makes up the blank for assembling carbon-based c-SE modules and sheds a brilliant light on developing the next generation of high-performance shielding materials with arbitrarily-customized structure for integrated electronics. 展开更多
关键词 3D printing Carbon-based nanoparticles Conformal electromagnetic interference shielding Integrated electronics
下载PDF
Layered Structural PBAT Composite Foams for Efficient Electromagnetic Interference Shielding 被引量:2
3
作者 Jianming Yang Hu Wang +2 位作者 Yali Zhang Hexin Zhang Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期273-286,共14页
The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In th... The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment. 展开更多
关键词 Electromagnetic interference shielding Layered structure Supercritical carbon dioxide foaming Poly(butyleneadipateco-terephthalate) MICROCELLULAR
下载PDF
Self‑Assembly of Binderless MXene Aerogel for Multiple‑Scenario and Responsive Phase Change Composites with Ultrahigh Thermal Energy Storage Density and Exceptional Electromagnetic Interference Shielding 被引量:1
4
作者 Chuanbiao Zhu Yurong Hao +8 位作者 Hao Wu Mengni Chen Bingqing Quan Shuang Liu Xinpeng Hu Shilong Liu Qinghong Ji Xiang Lu Jinping Qu 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期367-382,共16页
The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here... The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs. 展开更多
关键词 Self-assembly Multiple-scenario Phase change composites Thermal energy storage Electromagnetic interference shielding
下载PDF
MXene@c-MWCNT Adhesive Silica Nanofiber Membranes Enhancing Electromagnetic Interference Shielding and Thermal Insulation Performance in Extreme Environments 被引量:1
5
作者 Ziyuan Han Yutao Niu +11 位作者 Xuetao Shi Duo Pan Hu Liu Hua Qiu Weihua Chen Ben Bin Xu Zeinhom MEl-Bahy Hua Hou Eman Ramadan Elsharkawy Mohammed AAmin Chuntai Liu Zhanhu Guo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期82-98,共17页
A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetrae... A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future. 展开更多
关键词 SiO_(2)nanofiber membranes MXene@c-MWCNT Composite film Thermal insulation Electromagnetic interference shielding
下载PDF
Flexible, Transparent and Conductive Metal Mesh Films with Ultra‑High FoM for Stretchable Heating and Electromagnetic Interference Shielding 被引量:1
6
作者 Zibo Chen Shaodian Yang +9 位作者 Junhua Huang Yifan Gu Weibo Huang Shaoyong Liu Zhiqiang Lin Zhiping Zeng Yougen Hu Zimin Chen Boru Yang Xuchun Gui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期201-213,共13页
Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittan... Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications. 展开更多
关键词 Metal mesh Transparent conductive film Stretchable heater Electromagnetic interference shielding
下载PDF
Trunk‑Inspired SWCNT‑Based Wrinkled Films for Highly‑Stretchable Electromagnetic Interference Shielding and Wearable Thermotherapy
7
作者 Xiaofeng Gong Tianjiao Hu +8 位作者 You Zhang Yanan Zeng Ye Zhang Zhenhua Jiang Yinlong Tan Yanhong Zou Jing Wang Jiayu Dai Zengyong Chu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期429-444,共16页
Nowadays,the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health,so stretchable electromagnetic interference(EMI)shielding materials are highly demanded.Eleph... Nowadays,the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health,so stretchable electromagnetic interference(EMI)shielding materials are highly demanded.Elephant trunks are capable of grabbing fragile vegetation and tearing trees thanks not only to their muscles but also to their folded skins.Inspired by the wrinkled skin of the elephant trunks,herein,we propose a winkled conductive film based on single-walled carbon nanotubes(SWCNTs)for multifunctional EMI applications.The conductive film has a sandwich structure,which was prepared by coating SWCNTs on both sides of the stretched elastic latex cylindrical substrate.The shrinking-induced winkled conductive network could withstand up to 200%tensile strain.Typically,when the stretching direction is parallel to the polarization direction of the electric field,the total EMI shielding effectiveness could surprisingly increase from 38.4 to 52.7 dB at 200%tensile strain.It is mainly contributed by the increased connection of the SWCNTs.In addition,the film also has good Joule heating performance at several voltages,capable of releasing pains in injured joints.This unique property makes it possible for strain-adjustable multifunctional EMI shielding and wearable thermotherapy applications. 展开更多
关键词 Electromagnetic interference shielding Single-walled carbon nanotubes WRINKLES STRETCHABLE THERMOTHERAPY
下载PDF
Porous and Ultra-Flexible Crosslinked MXene/Polyimide Composites for Multifunctional Electromagnetic Interference Shielding 被引量:22
8
作者 Zhi-Hui Zeng Na Wu +7 位作者 Jing-Jiang Wei Yun-Fei Yang Ting-Ting Wu Bin Li Stefanie Beatrice Hauser Wei-Dong Yang Jiu-Rong Liu Shan-Yu Zhao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第4期59-74,共16页
Lightweight,ultra-flexible,and robust crosslinked transition metal carbide(Ti3C2 MXene)coated polyimide(PI)(C-MXene@PI)porous composites are manufactured via a scalable dip-coating followed by chemical crosslinking ap... Lightweight,ultra-flexible,and robust crosslinked transition metal carbide(Ti3C2 MXene)coated polyimide(PI)(C-MXene@PI)porous composites are manufactured via a scalable dip-coating followed by chemical crosslinking approach.In addition to the hydrophobicity,anti-oxidation and extreme-temperature stability,efficient utilization of the intrinsic conductivity of MXene,the interfacial polarization between MXene and PI,and the micrometer-sized pores of the composite foams are achieved.Consequently,the composites show a satisfactory X-band electromagnetic interference(EMI)shielding effectiveness of 22.5 to 62.5 dB at a density of 28.7 to 48.7 mg cm−3,leading to an excellent surface-specific SE of 21,317 dB cm^(2)g^(−1).Moreover,the composite foams exhibit excellent electrothermal performance as flexible heaters in terms of a prominent,rapid reproducible,and stable electrothermal effect at low voltages and superior heat performance and more uniform heat distribution compared with the commercial heaters composed of alloy plates.Furthermore,the composite foams are well attached on a human body to check their electromechanical sensing performance,demonstrating the sensitive and reliable detection of human motions as wearable sensors.The excellent EMI shielding performance and multifunctionalities,along with the facile and easy-to-scalable manufacturing techniques,imply promising perspectives of the porous C-MXene@PI composites in next-generation flexible electronics,aerospace,and smart devices. 展开更多
关键词 MXene POLYIMIDE Electromagnetic interference shielding HEATER Sensor
下载PDF
A Perspective for Developing Polymer-Based Electromagnetic Interference Shielding Composites 被引量:28
9
作者 Yali Zhang Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第6期39-47,共9页
The rapid development of aerospace weapons and equipment,wireless base stations and 5G communication technologies has put forward newer and higher requirements for the comprehensive performances of polymer-based elect... The rapid development of aerospace weapons and equipment,wireless base stations and 5G communication technologies has put forward newer and higher requirements for the comprehensive performances of polymer-based electromagnetic interference(EMI)shielding composites.However,most of currently prepared polymer-based EMI shielding composites are still difficult to combine high performance and multi-functionality.In response to this,based on the research works of relevant researchers as well as our research group,three possible directions to break through the above bottlenecks are proposed,including construction of efficient conductive networks,optimization of multi-interfaces for lightweight and multifunction compatibility design.The future development trends in three directions are prospected,and it is hoped to provide certain theoretical basis and technical guidance for the preparation,research and development of polymer-based EMI shielding composites. 展开更多
关键词 Polymer composites Electromagnetic interference shielding Conductive network LIGHTWEIGHT
下载PDF
High-Efficiency Electromagnetic Interference Shielding of rGO@FeNi/Epoxy Composites with Regular Honeycomb Structures 被引量:23
10
作者 Ping Song Zhonglei Ma +2 位作者 Hua Qiu Yifan Ru Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第3期244-256,共13页
With the rapid development of fifth-generation mobile com-munication technology and wearable electronic devices,electromagnetic interference and radiation pollution caused by electromagnetic waves have attracted world... With the rapid development of fifth-generation mobile com-munication technology and wearable electronic devices,electromagnetic interference and radiation pollution caused by electromagnetic waves have attracted worldwide attention.Therefore,the design and development of highly efficient EMI shielding materials are of great importance.In this work,the three-dimensional graphene oxide(GO)with regular honeycomb structure(GH)is firstly constructed by sacrificial template and freeze-dry-ing methods.Then,the amino functionalized FeNi alloy particles(f-FeNi)are loaded on the GH skeleton followed by in-situ reduction to prepare rGH@FeNi aerogel.Finally,the rGH@FeNi/epoxy EMI shielding com-posites with regular honeycomb structure is obtained by vacuum-assisted impregnation of epoxy resin.Benefitting from the construction of regular honeycomb structure and electromagnetic synergistic effect,the rGH@FeNi/epoxy composites with a low rGH@FeNi mass fraction of 2.1 wt%(rGH and f-FeNi are 1.2 and 0.9 wt%,respectively)exhibit a high EMI shielding effectiveness(EMI SE)of 46 dB,which is 5.8 times of that(8 dB)for rGO/FeNi/epoxy composites with the same rGO/FeNi mass fraction.At the same time,the rGH@FeNi/epoxy composites also possess excellent thermal stability(heat-resistance index and temperature at the maximum decomposition rate are 179.1 and 389.0°C respectively)and mechanical properties(storage modulus is 8296.2 MPa). 展开更多
关键词 Electromagnetic interference shielding rGO@FeNi Epoxy resins Honeycomb structures
下载PDF
Environmentally Tough and Stretchable MXene Organohydrogel with Exceptionally Enhanced Electromagnetic Interference Shielding Performances 被引量:18
11
作者 Yuanhang Yu Peng Yi +5 位作者 Wenbin Xu Xin Sun Gao Deng Xiaofang Liu Jianglan Shui Ronghai Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第5期77-91,共15页
Conductive hydrogels have potential applications in shielding electromagnetic(EM)radiation interference in deformable and wearable electronic devices,but usually suffer from poor environmental stability and stretching... Conductive hydrogels have potential applications in shielding electromagnetic(EM)radiation interference in deformable and wearable electronic devices,but usually suffer from poor environmental stability and stretching-induced shielding performance degradation.Although organohydrogels can improve the environmental stability of materials,their development is at the expense of reducing electrical conductivity and thus weakening EM interference shielding ability.Here,a MXene organohydrogel is prepared which is composed of MXene network for electron conduction,binary solvent channels for ion conduction,and abundant solvent-polymer-MXene interfaces for EM wave scattering.This organohydrogel possesses excellent anti-drying ability,low-temperature tolerance,stretchability,shape adaptability,adhesion and rapid self-healing ability.Two effective strategies have been proposed to solve the problems of current organohydrogel shielding materials.By reasonably controlling the MXene content and the glycerol-water ratio in the gel,MXene organohydrogel can exhibit exceptionally enhanced EM interference shielding performances compared to MXene hydrogel due to the increased physical cross-linking density of the gel.Moreover,MXene organohydrogel shows attractive stretching-enhanced interference effectiveness,caused by the connection and parallel arrangement of MXene nanosheets.This well-designed MXene organohydrogel has potential applications in shielding EM interference in deformable and wearable electronic devices. 展开更多
关键词 Electromagnetic interference shielding MXene organohydrogel Stretchable conductive film Anti-drying ability Lowtemperature tolerance
下载PDF
Structural Design Strategies of Polymer Matrix Composites for Electromagnetic Interference Shielding:A Review 被引量:34
12
作者 Chaobo Liang Zhoujie Gu +3 位作者 Yali Zhang Zhonglei Ma Hua Qiu Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第11期322-350,共29页
With the widespread application of electronic communication technology,the resulting electromagnetic radiation pollution has been significantly increased.Metal matrix electromagnetic interference(EMI)shielding materia... With the widespread application of electronic communication technology,the resulting electromagnetic radiation pollution has been significantly increased.Metal matrix electromagnetic interference(EMI)shielding materials have disadvantages such as high density,easy corrosion,difficult processing and high price,etc.Polymer matrix EMI shielding composites possess light weight,corrosion resistance and easy processing.However,the current polymer matrix composites present relatively low electrical conductivity and poor EMI shielding performance.This review firstly discusses the key concept,loss mechanism and test method of EMI shielding.Then the current development status of EMI shielding materials is summarized,and the research progress of polymer matrix EMI shielding composites with different structures is illustrated,especially for their preparation methods and evaluation.Finally,the corresponding key scientific and technical problems are proposed,and their development trend is also prospected. 展开更多
关键词 Polymer matrix composites Electromagnetic interference shielding Structural design
下载PDF
Super-Tough and Environmentally Stable Aramid Nanofiber@MXene Coaxial Fibers with Outstanding Electromagnetic Interference Shielding Efficiency 被引量:15
13
作者 Liu-Xin Liu Wei Chen +5 位作者 Hao-Bin Zhang Lvxuan Ye Zhenguo Wang Yu Zhang Peng Min Zhong-Zhen Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第7期72-85,共14页
Although electrically conductive and hydrophilic MXene sheets are promising for multifunctional fibers and electronic textiles,it is still a challenge to simultaneously enhance both conductivity and mechanical propert... Although electrically conductive and hydrophilic MXene sheets are promising for multifunctional fibers and electronic textiles,it is still a challenge to simultaneously enhance both conductivity and mechanical properties of MXene fibers because of the high rigidity of MXene sheets and insufficient inter-sheet interactions.Herein,we demonstrate a core-shell wet-spinning methodology for fabricating highly conductive,super-tough,ultra-strong,and environmentally stable Ti_(3)C_(2)T_(x) MXene-based core-shell fibers with conductive MXene cores and tough aramid nanofiber(ANF)shells.The highly orientated and low-defect structure endows the ANF@MXene core-shell fiber with supertoughness of~48.1 MJ m^(-3),high strength of~502.9 MPa,and high conductivity of~3.0×10^(5)S m^(-1).The super-tough and conductive ANF@MXene fibers can be woven into textiles,exhibiting an excellent electromagnetic interference(EMI)shielding efficiency of 83.4 dB at a small thickness of 213μm.Importantly,the protection of the ANF shells provides the fibers with satisfactory cyclic stability under dynamic stretching and bending,and excellent resistance to acid,alkali,seawater,cryogenic and high temperatures,and fire.The oxidation resistance of the fibers is demonstrated by their wellmaintained EMI shielding performances.The multifunctional core-shell fibers would be highly promising in the fields of EMI shielding textiles,wearable electronics and aerospace. 展开更多
关键词 Core-shell fibers MXene sheets Electromagnetic interference shielding Aramid nanofibers SUPER-TOUGHNESS
下载PDF
3D Printed Integrated Gradient-Conductive MXene/CNT/Polyimide Aerogel Frames for Electromagnetic Interference Shielding with Ultra-Low Reflection 被引量:20
14
作者 Tiantian Xue Yi Yang +5 位作者 Dingyi Yu Qamar Wali Zhenyu Wang Xuesong Cao Wei Fan Tianxi Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期332-345,共14页
Construction of advanced electromagnetic interference(EMI)shielding materials with miniaturized,programmable structure and low reflection are promising but challenging.Herein,an integrated transition-metal carbides/ca... Construction of advanced electromagnetic interference(EMI)shielding materials with miniaturized,programmable structure and low reflection are promising but challenging.Herein,an integrated transition-metal carbides/carbon nanotube/polyimide(gradient-conductive MXene/CNT/PI,GCMCP)aerogel frame with hierarchical porous structure and gradient-conductivity has been constructed to achieve EMI shielding with ultra-low reflection.The gradient-conductive structures are obtained by continuous 3D printing of MXene/CNT/poly(amic acid)inks with different CNT contents,where the slightly conductive top layer serves as EM absorption layer and the highly conductive bottom layer as reflection layer.In addition,the hierarchical porous structure could extend the EM dissipation path and dissipate EM by multiple reflections.Consequently,the GCMCP aerogel frames exhibit an excellent average EMI shielding efficiency(68.2 dB)and low reflection(R=0.23).Furthermore,the GCMCP aerogel frames with miniaturized and programmable structures can be used as EMI shielding gaskets and effectively block wireless power transmission,which shows a prosperous application prospect in defense industry and aerospace. 展开更多
关键词 3D printing MXene/CNT/Polyimide aerogel Gradient-conductive Electromagnetic interference shielding
下载PDF
Ultrathin, Lightweight, and Flexible CNT Buckypaper Enhanced Using MXenes for Electromagnetic Interference Shielding 被引量:15
15
作者 Rongliang Yang Xuchun Gui +6 位作者 Li Yao Qingmei Hu Leilei Yang Hao Zhang Yongtao Yao Hui Mei Zikang Tang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第4期208-220,共13页
Lightweight,flexibility,and low thickness are urgent requirements for next-generation high-performance electromagnetic interference(EMI)shielding materials for catering to the demand for smart and wearable electronic ... Lightweight,flexibility,and low thickness are urgent requirements for next-generation high-performance electromagnetic interference(EMI)shielding materials for catering to the demand for smart and wearable electronic devices.Although several efforts have focused on constructing porous and flexible conductive films or aerogels,few studies have achieved a balance in terms of density,thickness,flexibility,and EMI shielding effectiveness(SE).Herein,an ultrathin,lightweight,and flexible carbon nanotube(CNT)buckypaper enhanced using MXenes(Ti3C2Tx)for high-performance EMI shielding is synthesized through a facile electrophoretic deposition process.The obtained Ti3C2Tx@CNT hybrid buckypaper exhibits an outstanding EMI SE of 60.5 dB in the X-band at 100μm.The hybrid buckypaper with an MXene content of 49.4 wt%exhibits an EMI SE of 50.4 dB in the X-band with a thickness of only 15μm,which is 105%higher than that of pristine CNT buckypaper.Furthermore,an average specific SE value of 5.7×10^(4) dB cm^(2) g^(−1) is exhibited in the 5-μm hybrid buckypaper.Thus,this assembly process proves promising for the construction of ultrathin,flexible,and high-performance EMI shielding films for application in electronic devices and wireless communications. 展开更多
关键词 Carbon nanotube MXene BUCKYPAPER Electromagnetic interference shielding
下载PDF
Direct Ink Writing of Highly Conductive MXene Frames for Tunable Electromagnetic Interference Shielding and Electromagnetic Wave-Induced Thermochromism 被引量:12
16
作者 Xinyu Wu Tingxiang Tu +6 位作者 Yang Dai Pingping Tang Yu Zhang Zhiming Deng Lulu Li Hao-Bin Zhang Zhong-Zhen Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第10期14-28,共15页
The highly integrated and miniaturized next-generation electronic products call for high-performance electromagnetic interference(EMI)shielding materials to assure the normal operation of their closely assembled compo... The highly integrated and miniaturized next-generation electronic products call for high-performance electromagnetic interference(EMI)shielding materials to assure the normal operation of their closely assembled components.However,the most current techniques are not adequate for the fabrication of shielding materials with programmable structure and controllable shielding efficiency.Herein,we demonstrate the direct ink writing of robust and highly conductive Ti3C2Tx MXene frames with customizable structures by using MXene/AlOOH inks for tunable EMI shielding and electromagnetic wave-induced thermochromism applications.The as-printed frames are reinforced by immersing in AlCl_(3)/HCl solution to remove the electrically insulating AlOOH nanoparticles,as well as cross-link the MXene sheets and fuse the filament interfaces with aluminum ions.After freeze-drying,the resultant robust and porous MXene frames exhibit tunable EMI shielding efficiencies in the range of 25-80 dB with the highest electrical conductivity of 5323 S m−1.Furthermore,an electromagnetic wave-induced thermochromic MXene pattern is assembled by coating and curing with thermochromic polydimethylsiloxane on a printed MXene pattern,and its color can be changed from blue to red under the high-intensity electromagnetic irradiation.This work demonstrates a direct ink printing of customizable EMI frames and patterns for tuning EMI shielding efficiency and visualizing electromagnetic waves. 展开更多
关键词 MXene Electromagnetic interference shielding Direct ink writing Electrical conductivity THERMOCHROMISM
下载PDF
Printable Aligned Single-Walled Carbon Nanotube Film with Outstanding Thermal Conductivity and Electromagnetic Interference Shielding Performance 被引量:9
17
作者 Zhihui Zeng Gang Wang +8 位作者 Brendan F.Wolan Na Wu Changxian Wang Shanyu Zhao Shengying Yue Bin Li Weidong He Jiurong Liu Joseph W.Lyding 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第11期143-156,共14页
Ultrathin,lightweight,and flexible aligned single-walled carbon nanotube(SWCNT)films are fabricated by a facile,environmentally friendly,and scalable printing methodology.The aligned pattern and outstanding intrinsic ... Ultrathin,lightweight,and flexible aligned single-walled carbon nanotube(SWCNT)films are fabricated by a facile,environmentally friendly,and scalable printing methodology.The aligned pattern and outstanding intrinsic properties render“metal-like”thermal conductivity of the SWCNT films,as well as excellent mechanical strength,flexibility,and hydrophobicity.Further,the aligned cellular microstructure promotes the electromagnetic interference(EMI)shielding ability of the SWCNTs,leading to excellent shielding effectiveness(SE)of~39 to 90 dB despite a density of only~0.6 g cm^(−3) at thicknesses of merely 1.5-24μm,respectively.An ultrahigh thickness-specific SE of 25693 dB mm^(−1) and an unprecedented normalized specific SE of 428222 dB cm^(2)g^(−1) are accomplished by the freestanding SWCNT films,significantly surpassing previously reported shielding materials.In addition to an EMI SE greater than 54 dB in an ultra-broadband frequency range of around 400 GHz,the films demonstrate excellent EMI shielding stability and reliability when subjected to mechanical deformation,chemical(acid/alkali/organic solvent)corrosion,and high-/low-temperature environments.The novel printed SWCNT films offer significant potential for practical applications in the aerospace,defense,precision components,and smart wearable electronics industries. 展开更多
关键词 Aligned film Single-walled carbon nanotube LIGHTWEIGHT FLEXIBLE Thermal conductivity Electromagnetic interference shielding
下载PDF
Mechanically strong and folding-endurance Ti_(3)C_(2)T_(x) MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management 被引量:16
18
作者 Lei Wang Zhonglei Ma +3 位作者 Yali Zhang Hua Qiu Kunpeng Ruan Junwei Gu 《Carbon Energy》 SCIE CAS 2022年第2期200-210,共11页
Electromagnetic interference(EMI)shielding materials with excellent flexibility and mechanical properties and outstanding thermal conductivity have become a hot topic of research in functional composites.In this study... Electromagnetic interference(EMI)shielding materials with excellent flexibility and mechanical properties and outstanding thermal conductivity have become a hot topic of research in functional composites.In this study,the“sol-gel-film conversion technique”is used to assemble polyetherimidefunctionalized Ti_(3)C_(2)T_(x) nanosheets(f-Ti_(3)C_(2)T_(x))with poly(p-phenylene-2,6-benzobisoxazole)(PBO)nanofibers(PNFs),followed by dialysis and vacuum drying to prepare f-Ti_(3)C_(2)T_(x)/PNF films with lamellar structures.When the loading of f-Ti_(3)C_(2)T_(x) is 70 wt%,the f-Ti_(3)C_(2)T_(x)/PNF film presents optimal comprehensive properties,with an EMI shielding effectiveness(SE)of 35 dB and a specific SE/thickness((SSE,SE/density)/t)of 8211 dB cm^(2)/g,a tensile strength of 125.1 MPa,an in-plane thermal conductivity coefficient(λ)of 5.82 W/(m K),and electrical conductivity of 1943 S/m.After repeated folding for 10,000 cycles,the EMI SE and the tensile strength of f-Ti_(3)C_(2)T_(x)/PNFs films still remain 33.4 dB and 116.1 MPa,respectively.Additionally,the f-Ti_(3)C_(2)T_(x)/PNF film also shows excellent thermal stability,flame retardancy,and structural stability.This would provide a novel method for the design and fabrication of multifunctional composite films and considerably expand the applications of MXene-and PNF-based composites in the fields of EMI shielding and thermal management. 展开更多
关键词 electromagnetic interference shielding PBO nanofibers thermal management Ti_(3)C_(2)T_(x)MXene
下载PDF
Significantly Enhanced Electromagnetic Interference Shielding Performances of Epoxy Nanocomposites with Long-Range Aligned Lamellar Structures 被引量:11
19
作者 Lei Wang Zhonglei Ma +3 位作者 Hua Qiu Yali Zhang Ze Yu Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期617-629,共13页
High-efficiency electromagnetic interference(EMI)shielding materials are of great importance for electronic equipment reliability,information security and human health.In this work,bidirectional aligned Ti_(3)C_(2)T_(... High-efficiency electromagnetic interference(EMI)shielding materials are of great importance for electronic equipment reliability,information security and human health.In this work,bidirectional aligned Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/CNF aerogels(BTFCA)were firstly assembled by bidirectional freezing and freeze-drying technique,and the BTFCA/epoxy nanocomposites with long-range aligned lamellar structures were then prepared by vacuum-assisted impregnation of epoxy resins.Benefitting from the successful construction of bidirectional aligned three-dimensional conductive networks and electromagnetic synergistic effect,when the mass fraction of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4) are 2.96 and 1.48 wt%,BTFCA/epoxy nanocomposites show outstanding EMI shield-ing effectiveness of 79 dB,about 10 times of that of blended Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/epoxy(8 dB)nanocomposites with the same loadings of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4).Meantime,the corresponding BTFCA/epoxy nanocomposites also present excellent thermal stability(T_(heat-resistance index) of 198.7℃)and mechanical properties(storage modulus of 9902.1 MPa,Young’s modulus of 4.51 GPa and hardness of 0.34 GPa).Our fabricated BTFCA/epoxy nanocomposites would greatly expand the applications of MXene and epoxy resins in the fields of information security,aerospace and weapon manufacturing,etc. 展开更多
关键词 Electromagnetic interference shielding Epoxy nanocomposites Ti_(3)C_(2)Tx Fe_(3)O_(4) Bidirectional aligned three-dimensional conductive networks
下载PDF
Highly Ordered Thermoplastic Polyurethane/Aramid Nanofiber Conductive Foams Modulated by Kevlar Polyanion for Piezoresistive Sensing and Electromagnetic Interference Shielding 被引量:6
20
作者 Kunpeng Qian Jianyu Zhou +4 位作者 Miao Miao Hongmin Wu Sineenat Thaiboonrod Jianhui Fang Xin Feng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期335-352,共18页
Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference(EMI) shielding. With the aids of Kevla... Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference(EMI) shielding. With the aids of Kevlar polyanionic chains, thermoplastic polyurethane(TPU) foams reinforced by aramid nanofibers(ANF) with adjustable pore-size distribution were successfully obtained via a nonsolvent-induced phase separation. In this regard, the most outstanding result is the in situ formation of ANF in TPU foams after protonation of Kevlar polyanion during the NIPS process. Furthermore, in situ growth of copper nanoparticles(Cu NPs) on TPU/ANF foams was performed according to the electroless deposition by using the tiny amount of pre-blended Ti_(3)C_(2)T_(x) MXene as reducing agents. Particularly, the existence of Cu NPs layers significantly promoted the storage modulus in 2,932% increments, and the well-designed TPU/ANF/Ti_(3)C_(2)T_(x) MXene(PAM-Cu) composite foams showed distinguished compressive cycle stability. Taking virtues of the highly ordered and elastic porous architectures, the PAM-Cu foams were utilized as piezoresistive sensor exhibiting board compressive interval of 0–344.5 kPa(50% strain) with good sensitivity at 0.46 kPa^(-1). Meanwhile,the PAM-Cu foams displayed remarkable EMI shielding effectiveness at 79.09 dB in X band. This work provides an ideal strategy to fabricate highly ordered TPU foams with outstanding elastic recovery and excellent EMI shielding performance, which can be used as a promising candidate in integration of satisfactory piezoresistive sensor and EMI shielding applications for human–machine interfaces. 展开更多
关键词 Highly ordered conductive foams MXene NANOFIBER Thermoplastic Kevlar polyanion Piezoresistive sensing Electromagnetic interference shielding
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部