期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
RNAi-Mediated Silencing of ITPK Gene Reduces Phytic Acid Content,Alters Transcripts of Phytic Acid Biosynthetic Genes,and Modulates Mineral Distribution in Rice Seeds 被引量:7
1
作者 Aritra KARMAKAR Sananda BHATTACHARYA +4 位作者 Shinjini SENGUPTA Nusrat ALI Sailendra Nath SARKAR Karabi DATTA Swapan K.DATTA 《Rice science》 SCIE CSCD 2020年第4期315-328,共14页
Phytic acid is the principal storage form of phosphorus in plant seeds and an essential signalling molecule in several regulatory processes of plant development.However,it is known as an anti-nutrient compound owing t... Phytic acid is the principal storage form of phosphorus in plant seeds and an essential signalling molecule in several regulatory processes of plant development.However,it is known as an anti-nutrient compound owing to its potent chelating property.Thus,reducing the phytic acid content in crops is desirable.Studies involving regulation of MIPS and IPK1 genes to generate low phytate rice have been reported earlier.However,the functional significance of OsITPK and the effect of its down-regulation on phytic acid content and the associated pleiotropic effects on rice have not yet been investigated.In this study,tissue specific RNA interference(RNAi)-mediated down-regulation of a major ITPK homolog(OsITP5/6K-1)resulted in 46.2%decrease in phytic acid content of T2 transgenic seeds with a subsequent 3-fold enhancement in the inorganic phosphorus content.Silencing of OsITP5/6K-1 altered the transcript levels of essential phytic acid pathway genes,without significantly affecting the transcript levels of other OsITPK homologs.Furthermore,the mapping of elements through X-ray microfluorescence analysis revealed significant changes in the spatial distribution pattern and translocation of elements in low phytate seeds.Additionally,low phytate polished seeds exhibited 1.3-fold and 1.6-fold enhancement in iron and zinc content in the grain endosperm,respectively.Silencing of OsITP5/6K-1 also altered the amino acid and myo-inositol content of the transgenic seeds.Our results successfully established that RNAi-mediated silencing of OsITP5/6K-1 gene significantly reduced the phytate levels in seeds without hampering the germination potential of seeds and plant growth.The present study provided an insight into the mechanism of phytic acid biosynthesis pathway. 展开更多
关键词 inositol triphosphate kinase-1 phytic acid mineral content RNA interference silencing X-ray microfluorescence
下载PDF
RNA silencing movement in plants 被引量:4
2
作者 Glykeria Mermigka Frdric Verret Kriton Kalantidis 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2016年第4期328-342,共15页
Multicellular organisms, like higher plants, need to coordinate their growth and development and to cope with environmental cues. To achieve this, various signal molecules are transported between neighboring cells and... Multicellular organisms, like higher plants, need to coordinate their growth and development and to cope with environmental cues. To achieve this, various signal molecules are transported between neighboring cells and distant organs to control the fate of the recipient cells and organs. RNA silencing produces cell non-autonomous signal molecules that can move over short or long distances leading to the sequence specific silencing of a target gene in a well defined area of cells or throughout the entire plant,respectively. The nature of these signal molecules, the route of silencing spread, and the genes involved in their production, movement and reception are discussed in this review. Additionally, a short section on features of silencing spread in animal models is presented at the end of this review. 展开更多
关键词 Cell non-autonomous post-transcriptional gene silencing RNA interference short range silencing spread systemic silencing plant RNA silencing transcriptional gene silencing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部