期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Visibility and Resolution Enhancement of Fourth-Order Ghost Interference with Thermal Light
1
作者 问峰 张荀 +3 位作者 袁晨志 李昌彪 王静达 张彦鹏 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第1期70-74,共5页
A scheme for fourth-order double-slit ghost interference with a pseudo-thermal light source is proposed. It is shown that not only can the visibility be dramatically enhanced compared to the third-order case, but also... A scheme for fourth-order double-slit ghost interference with a pseudo-thermal light source is proposed. It is shown that not only can the visibility be dramatically enhanced compared to the third-order case, but also higher resolution is demonstrated if we scan two of three reference detectors in opposite directions with the same speed, meanwhile another two in identical directions where the speed of one reference detector is twice the other. The results show that the visibility and resolution improvement of the fourth-order ghost interference fringe can be applied to the Nth-order ghost imaging. 展开更多
关键词 visibility and Resolution Enhancement of Fourth-Order Ghost interference with Thermal Light
下载PDF
Temperature characterizations of silica asymmetric Mach–Zehnder interferometer chip for quantum key distribution
2
作者 吴丹 李骁 +9 位作者 王亮亮 张家顺 陈巍 王玥 王红杰 李建光 尹小杰 吴远大 安俊明 宋泽国 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期183-189,共7页
Quantum key distribution(QKD)system based on passive silica planar lightwave circuit(PLC)asymmetric Mach–Zehnder interferometers(AMZI)is characterized with thermal stability,low loss and sufficient integration scalab... Quantum key distribution(QKD)system based on passive silica planar lightwave circuit(PLC)asymmetric Mach–Zehnder interferometers(AMZI)is characterized with thermal stability,low loss and sufficient integration scalability.However,waveguide stresses,both intrinsic and temperature-induced stresses,have significant impacts on the stable operation of the system.We have designed silica AMZI chips of 400 ps delay,with bend waveguides length equalized for both long and short arms to balance the stresses thereof.The temperature characteristics of the silica PLC AMZI chip are studied.The interference visibility at the single photon level is kept higher than 95%over a wide temperature range of 12℃.The delay time change is 0.321 ps within a temperature change of 40℃.The spectral shift is 0.0011 nm/0.1℃.Temperature-induced delay time and peak wavelength variations do not affect the interference visibility.The experiment results demonstrate the advantage of being tolerant to chip temperature fluctuations. 展开更多
关键词 quantum key distribution planar lightwave circuit temperature characterization interference visibility
下载PDF
Wave-particle duality relation with a quantum N-path beamsplitter
3
作者 王冬阳 吴俊杰 +4 位作者 王易之 刘雍 黄安琪 于春霖 杨学军 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期220-228,共9页
The wave-particle duality relation derived by Englert sets an upper bound of the extractable information from wave and particle properties in a two-path interferometer.Surprisingly,previous studies demonstrated that t... The wave-particle duality relation derived by Englert sets an upper bound of the extractable information from wave and particle properties in a two-path interferometer.Surprisingly,previous studies demonstrated that the introduction of a quantum beamsplitter in the interferometer could break the limitation of this upper bound,due to interference between wave and particle states.Along the other line,a lot of efforts have been made to generalize this relation from the two-path setup to the N-path case.Thus,it is an interesting question that whether a quantum N-path beamsplitter can break the limitation as well.This paper systemically studies the model of a quantum N-path beamsplitter,and finds that the generalized wave-particle duality relation between interference visibility and path distinguishability is also broken in certain situations.We further study the maximal extractable information's reliance on the interference between wave and particle properties,and derive a quantitative description.We then propose an experimental methodology to verify the break of the limitation.Our work reflects the effect of quantum superposition on wave-particle duality,and exhibits a new aspect of the relation between visibility and path distinguishability in N-path interference.Moreover,it implies the observer's influence on wave-particle duality. 展开更多
关键词 wave-particle duality interference visibility path distinguishability quantum N-path beamsplitter
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部