Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high...Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high contrast.However,limited by the equipment cost and reconstruction time requirements,the existing PAI systems distributed with annular array transducers are difficult to take into account both the image quality and the imaging speed.In this paper,a triple-path feature transform network(TFT-Net)for ring-array photoacoustic tomography is proposed to enhance the imaging quality from limited-view and sparse measurement data.Specifically,the network combines the raw photoacoustic pressure signals and conventional linear reconstruction images as input data,and takes the photoacoustic physical model as a prior information to guide the reconstruction process.In addition,to enhance the ability of extracting signal features,the residual block and squeeze and excitation block are introduced into the TFT-Net.For further efficient reconstruction,the final output of photoacoustic signals uses‘filter-then-upsample’operation with a pixel-shuffle multiplexer and a max out module.Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net can restore the target boundary clearly,reduce background noise,and realize fast and high-quality photoacoustic image reconstruction of limited view with sparse sampling.展开更多
It is well known that optical tomography can accurately and quantitatively reconstruct the refractive index field of a transparent medium and display the three dimensional image of other physical quantities relevant t...It is well known that optical tomography can accurately and quantitatively reconstruct the refractive index field of a transparent medium and display the three dimensional image of other physical quantities relevant to temperature or density. In this paper, a new multidirectional holographic interferometric system is built, and two kinds of image reconstruction algorithms are introduced and an automatic image processing system of interferogram is designed. A three dimentsional asymmetric gas flow field above a combustor is expertmentally investigated with holographic interferometry. The reconstructed temperatures are similar to those measured with a thermocouple.展开更多
A nondestructive X-ray analysis technique combining transmission tomography, fluorescence tomography and Compton tomography based on synchrotron radiation is described. This novel technique will be an optional experim...A nondestructive X-ray analysis technique combining transmission tomography, fluorescence tomography and Compton tomography based on synchrotron radiation is described. This novel technique will be an optional experimental technique at SSRF's hard X-ray micro-focusing beamline under construction at present. An experimental result of combined X-ray tomography is obtained in NE-5A station of PF. The reconstructed images of test objects are given.展开更多
Spectral domain polarization-sensitive optical coherence tomography (SDPS-OCT) is a depth-resolved polarization-sensitive interferometry which integrates polarization optics into spectral domain optical co- herence ...Spectral domain polarization-sensitive optical coherence tomography (SDPS-OCT) is a depth-resolved polarization-sensitive interferometry which integrates polarization optics into spectral domain optical co- herence tomography (SD-OCT). This configuration can obtain birefringence information of samples and improve the imaging speed. In this paper, horizontally polarized light is used to replace natural light of the source. Then, right-rotated circularly polarized light is the incident sample light. To obtain two orthogonal components of the polarized interferogram, the reflected light of the reference arm is set to be 45° linearly polarized light. These two components are acquired by two spectrometers synchronously. The system was employed to achieve 12.8μm axial resolution and 4.36μm transverse resolution. We have imaged in vitro chicken tendon and muscle tissues with these svstem.展开更多
Three-dimensional(3D)refractive index(RI)distribution is important to reveal the object’s inner structure.We implemented terahertz(THz)diffraction tomography with a continuous-wave single-frequency THz source for mea...Three-dimensional(3D)refractive index(RI)distribution is important to reveal the object’s inner structure.We implemented terahertz(THz)diffraction tomography with a continuous-wave single-frequency THz source for measuring 3D RI maps.The off-axis holographic interference configuration was employed to obtain the quantitative scattered field of the object under each rotation angle.The 3D reconstruction algorithm adopted the filtered backpropagation method,which can theoretically calculate the exact scattering potential from the measured scattered field.Based on the Rytov approximation,the 3D RI distribution of polystyrene foam spheres was achieved with high fidelity,which verified the feasibility of the proposed method.展开更多
We examine the problem of whether a multipartite pure quantum state can be uniquely determined by its reduced density matrices.We show that a generic pure state in three party Hilbert space HA■HB■HC, where dim(HA) =...We examine the problem of whether a multipartite pure quantum state can be uniquely determined by its reduced density matrices.We show that a generic pure state in three party Hilbert space HA■HB■HC, where dim(HA) = 2 and dim(HB) = dim(HC), can be uniquely determined by its reduced states on subsystems HA■HB and HA■HC. Then, we generalize the conclusion to the case that dim(H_1) > 2. As a corollary, we show that a generic N-qudit pure quantum state is uniquely determined by only two of its[(N+1)/2]-particle reduced density matrices. Furthermore,our results indicate a method to uniquely determine a generic N-qudit pure state of dimension D = d^N with only O(D) local measurements, which is an improvement compared to the previous known approach that uses O(D log^2 D) or O(D log D) local measurements.展开更多
基金supported by National Key R&D Program of China[2022YFC2402400]the National Natural Science Foundation of China[Grant No.62275062]Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology[Grant No.2020B121201010-4].
文摘Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high contrast.However,limited by the equipment cost and reconstruction time requirements,the existing PAI systems distributed with annular array transducers are difficult to take into account both the image quality and the imaging speed.In this paper,a triple-path feature transform network(TFT-Net)for ring-array photoacoustic tomography is proposed to enhance the imaging quality from limited-view and sparse measurement data.Specifically,the network combines the raw photoacoustic pressure signals and conventional linear reconstruction images as input data,and takes the photoacoustic physical model as a prior information to guide the reconstruction process.In addition,to enhance the ability of extracting signal features,the residual block and squeeze and excitation block are introduced into the TFT-Net.For further efficient reconstruction,the final output of photoacoustic signals uses‘filter-then-upsample’operation with a pixel-shuffle multiplexer and a max out module.Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net can restore the target boundary clearly,reduce background noise,and realize fast and high-quality photoacoustic image reconstruction of limited view with sparse sampling.
文摘It is well known that optical tomography can accurately and quantitatively reconstruct the refractive index field of a transparent medium and display the three dimensional image of other physical quantities relevant to temperature or density. In this paper, a new multidirectional holographic interferometric system is built, and two kinds of image reconstruction algorithms are introduced and an automatic image processing system of interferogram is designed. A three dimentsional asymmetric gas flow field above a combustor is expertmentally investigated with holographic interferometry. The reconstructed temperatures are similar to those measured with a thermocouple.
文摘A nondestructive X-ray analysis technique combining transmission tomography, fluorescence tomography and Compton tomography based on synchrotron radiation is described. This novel technique will be an optional experimental technique at SSRF's hard X-ray micro-focusing beamline under construction at present. An experimental result of combined X-ray tomography is obtained in NE-5A station of PF. The reconstructed images of test objects are given.
文摘Spectral domain polarization-sensitive optical coherence tomography (SDPS-OCT) is a depth-resolved polarization-sensitive interferometry which integrates polarization optics into spectral domain optical co- herence tomography (SD-OCT). This configuration can obtain birefringence information of samples and improve the imaging speed. In this paper, horizontally polarized light is used to replace natural light of the source. Then, right-rotated circularly polarized light is the incident sample light. To obtain two orthogonal components of the polarized interferogram, the reflected light of the reference arm is set to be 45° linearly polarized light. These two components are acquired by two spectrometers synchronously. The system was employed to achieve 12.8μm axial resolution and 4.36μm transverse resolution. We have imaged in vitro chicken tendon and muscle tissues with these svstem.
基金supported by the National Natural Science Foundation of China(Nos.62075001 and 61675010)the Science Foundation of Education Commission of Beijing(No.KZ202010005008)the Beijing Nova Program(No.XX2018072)。
文摘Three-dimensional(3D)refractive index(RI)distribution is important to reveal the object’s inner structure.We implemented terahertz(THz)diffraction tomography with a continuous-wave single-frequency THz source for measuring 3D RI maps.The off-axis holographic interference configuration was employed to obtain the quantitative scattered field of the object under each rotation angle.The 3D reconstruction algorithm adopted the filtered backpropagation method,which can theoretically calculate the exact scattering potential from the measured scattered field.Based on the Rytov approximation,the 3D RI distribution of polystyrene foam spheres was achieved with high fidelity,which verified the feasibility of the proposed method.
基金supported by Chinese Ministry of Education(Grant No.20173080024)the Natural Sciences and Engineering Research Council of Canada(NSERC)Canadian Institute for Advanced Research(CIFAR)
文摘We examine the problem of whether a multipartite pure quantum state can be uniquely determined by its reduced density matrices.We show that a generic pure state in three party Hilbert space HA■HB■HC, where dim(HA) = 2 and dim(HB) = dim(HC), can be uniquely determined by its reduced states on subsystems HA■HB and HA■HC. Then, we generalize the conclusion to the case that dim(H_1) > 2. As a corollary, we show that a generic N-qudit pure quantum state is uniquely determined by only two of its[(N+1)/2]-particle reduced density matrices. Furthermore,our results indicate a method to uniquely determine a generic N-qudit pure state of dimension D = d^N with only O(D) local measurements, which is an improvement compared to the previous known approach that uses O(D log^2 D) or O(D log D) local measurements.