Interferon Regulatory Factor-2 (IRF-2) belongs to IRF family, was identified as a mammalian transcription factor involved in Interferon beta (IFNβ) gene regulation. Besides that IRF-2 is involved in immunomodulation,...Interferon Regulatory Factor-2 (IRF-2) belongs to IRF family, was identified as a mammalian transcription factor involved in Interferon beta (IFNβ) gene regulation. Besides that IRF-2 is involved in immunomodulation, hematopoietic differentiation, cell cycle regulation and oncogenesis. We have done molecular sub-cloning and expression of recombinant murine IRF-2 as GST (Glutathione-S-Transferase)- IRF-2 fusion protein in E. coli/XL-1blue cells. Recombinant IRF-2 with GST moiety at N-terminus expressed as GST-IRF-2 (~66 kd) in E. coli along with different low molecular mass degradation products revealed approximately 30, 42, 60 and 62 kd by SDS-PAGE and Western blot, respectively. We further confirm that degradation takes place at C-terminus of the fusion protein not at N-terminus as anti-GST antibody was detecting all bands in the immunoblot. The recombinant IRF-2 was biologically active along with their degradation products in terms of their DNA binding activity as assessed by Electrophoretically Mobility Shift Assay (EMSA). We observed three different molecular mass DNA/protein complexes (1 - 3) with Virus Response Element (VRE) derived from human Interferon IFNβ gene and five different molecular mass complexes (1 - 5) with IRF-E motif (GAAAGT)4 in EMSA gel. GST only expressed from empty vector did not bind to these DNA elements. To confirm that the binding is specific, all complexes were competed out completely when challenged with 100-X fold molar excess of IRF-E oligo under cold competition. It means degradation products along with full-length protein are able to interact with VREβ as well as IRF-E motif. This means degradation products may regulate the target gene (s) activation/repression via interacting with VRE/IRF-E.展开更多
AIM To understand the cellular and molecular changes inperipheral blood that can lead to the development of hepatocellular carcinoma(HCC) and provide new methods for its diagnosis and treatment.METHODS Peripheral bloo...AIM To understand the cellular and molecular changes inperipheral blood that can lead to the development of hepatocellular carcinoma(HCC) and provide new methods for its diagnosis and treatment.METHODS Peripheral blood mononuclear cells were isolated from the peripheral blood of HCC patients and normal controls and then analyzed by flow cytometry. The percentage of transforming growth factor-β(TGF-β)+ regulatory cells(Tregs) in the peripheral blood was measured, and the expression of TGF-β was also determined. Then, the relationship between the changes and the 5-year survival of patients was analyzed. In addition, recombinant human TGF-β(rh TGF-β) and recombinant human interleukin-6 were added to stimulate the cultured cells, and their effects on HCC were evaluated.RESULTS The expression of TGF-β and the percentage of TGF-β+ Tregs in the peripheral blood of HCC patients increased significantly compared with normal controls. Compared with the low TGF-β expression group, the high TGF-β expression group had a significantly lower 5-year survival rate, and the same result was found in the two TGF-β+ Treg groups, suggesting that TGF-β and TGF-β+ Tregs were negatively correlated with the overall survival of the patients. In addition, rh TGF-β promoted the growth of tumor cells and induced high expression levels of IL-6, which further promoted tumor proliferation.CONCLUSION The results showed that TGF-β may promote tumor growth and proliferation by inducing the production of IL-6, and TGF-β and TGF-β+ Tregs may serve as new markers for predicting a poor prognosis in HCC.展开更多
AIM: To investigate whether DNA-dependent activator of interferon-regulatory factors (DAI) inhibits hepatitis B virus (HBV) replication and what the mechanism is. METHODS: After the human hepatoma cell line Huh7...AIM: To investigate whether DNA-dependent activator of interferon-regulatory factors (DAI) inhibits hepatitis B virus (HBV) replication and what the mechanism is. METHODS: After the human hepatoma cell line Huh7 was cotransfected with DAI and HBV expressing plas- mid, viral protein (HBV surface antigen and HBV e an- tigen) secretion was detected by enzyme-linked immu- nosorbent assay, and HBV RNA was analyzed by real- time polymerase chain reaction and Northern blotting, and viral DNA replicative intermediates were examined by Southern blotting. Interferon regulatory factor 3 (IRF3) phosphorylation and nuclear translocation were analyzed via Western blotting and immunofluorescence staining respectively. Nuclear factor-KB (NF-KB) activity induced by DAI was detected by immunofluorescence staining of P65 and dual luciferase reporter assay. Tran- swell co-culture experiment was performed in order to investigate whether the antiviral effects of DAI were dependent on the secreted cytokines. RESULTS: Viral protein secretion was significantly re- duced by 57% (P 〈 0.05), and the level of total HBV RNA was reduced by 67% (P 〈 0.05). The viral core particle-associated DNA was also dramatically down- regulated in DAI-expressing Huh7 cells. Analysis of involved signaling pathways revealed that activation of NF-KB signaling was essential for DAI to elicit antivi- ral response in Huh7 cells. When the NF-KB signaling pathway was blocked by a NF-KB signaling suppressor (I~:B^-SR), the anti-HBV activity of DAI was remarkably abrogated. The inhibitory effect of DAI was indepen- dent of IRF3 signaling and secreted cytokines. CONCLUSION: This study demonstrates that DAI can inhibit HBV replication and the inhibitory effect is asso- ciated with activation of NF-KB but independent of IRF3 and secreted cytokines.展开更多
目的探讨中国人Van der Woude综合征(VWS)的临床表型及遗传学特点。方法先证者法收集14个VWS家系并进行口腔专科检查、家系调查及基因突变分析,分析不同VWS家系个体或同一家系不同个体的临床表型,绘制家系图谱,明确遗传方式及致病基因,...目的探讨中国人Van der Woude综合征(VWS)的临床表型及遗传学特点。方法先证者法收集14个VWS家系并进行口腔专科检查、家系调查及基因突变分析,分析不同VWS家系个体或同一家系不同个体的临床表型,绘制家系图谱,明确遗传方式及致病基因,计算表型分布频率和表型基因频率。结果 VWS家系基本符合常染色体显性遗传特征,患者多数表现为典型的VWS,致病基因为干扰素调节因子6(IRF6)。VWS表型分布频率为:唇瘘91.9%,唇腭裂73.0%,牙畸形8.1%。不同家系个体和同一家系的不同个体临床表型存在明显差异。结论收集的家系均为常染色体显性遗传,表现度变异大。中国人群VWS致病基因为IRF6,为Ⅰ型VWS。展开更多
Objective: Nonsyndromic cleft lip with or without cleft palate(NSCL/P) is a common birth defect with unclear etiology. Both genetic and environmental factors may contribute to NSCL/P. Many genes have been identifie...Objective: Nonsyndromic cleft lip with or without cleft palate(NSCL/P) is a common birth defect with unclear etiology. Both genetic and environmental factors may contribute to NSCL/P. Many genes have been identified as candidate genes associated with this disease. Interferon regulatory factor 6(IRF6) gene and transforming growth factor-a(TGFA) gene seem to be crucial in the predisposition of NSCL/ P. Here we evaluated some single nucleotide polymorphisms(SNPs) loci of TGFA and IRF6 genes in Chinese nuclear families consisting of fathers, mothers and affected offspring with NSCL/P. Methods:Fifty patients of NSCL/P were confirmed by the plastic surgeons. They and their parents were included in the study, all with the informed consents. SNPs loci of TGFA and IRF6 genes were analyzed by microarray technology. Some PCR products were randomly chosen and sequenced to check microarray results. The distribution of gene type and allele frequency between patient group and parents group were compared. Then a Haplotype Relative Risk(HRR) and Transmission Disequilibrium Test(TDT) were performed. Results:The sequences of randomly selected PCR products were all consistent with the microarray results. All loci were in Hardy-Weinberg equilibrium. There were no significant differences in the distribution of genotypes and alleles between patients and their parents. Using HRR and TDT analyses the V274I of IRF6 was associated with NSCL/P, while another SNP locus oflRF6 was not. Strong evidence of linkage disequilibrium was found between the 2 SNP loci of TGFA and disease with the HRR analysis, but not with the TDT analysis. Conclusion:Our study confirms the contribution of IRF6 in the etiology of NSCL/P in populations of Asian ancestry. The association of TGFA with NSCL/P requires further research.展开更多
Background The extracellular release of the danger signal high mobility group box-1 (HMGB1) has been implicated in the pathogenesis and outcomes of sepsis. Understanding the mechanisms responsible for HMGB1 release ...Background The extracellular release of the danger signal high mobility group box-1 (HMGB1) has been implicated in the pathogenesis and outcomes of sepsis. Understanding the mechanisms responsible for HMGB1 release can lead to the identification of targets that may inhibit this process. The transcription factor interferon regulatory factor-1 (IRF-1) is an important mediator of innate immune responses and has been shown to participate in mortality associated with endotoxemia; however, its role in mediating the release of HMGB1 in these settings is unknown. Methods Male IRF-1 knockout (KO) and age matched C57BL/6 wild type (WT) mice were given intraperitoneal (IP) injections of lipopolysaccharide (LPS). In some experiments, 96 hours survival rates were observed. In other experiments, mice were sacrificed 12 hours after LPS administration and sera were harvested for future analysis. In in vitro study, RAW 264.7 murine monocyte/macrophage-like cells or primary peritoneal macrophage obtained from IRF-1 KO and WT mice were cultured for LPS mediated HMGB1 release analysis. And the mechanism for HMGB1 release was analyzed by immune-precipitation. Results IRF-1 KO mice experienced less mortality, and released less systemic HMGB1 compared to their WT counterparts. Exogenous administration of recombinant HMGB1 to IRF-1 KO mice returned the mortality rate to that seen originally in IRF-1 WT mice. Using cultures of peritoneal macrophages or RAW264.7 cells, in vitro LPS stimulation induced the release of HMGB1 in an IRF-1 dependent manner. And the janus associated kinase (JAK)-IRF-1 signal pathway appeared to participate in the signaling mechanisms of LPS-induced HMGB1 release by mediating acetylation of HMGBI. Conclusion IRF-1 plays a role in LPS induced release of HMGB1 and therefore may serve as a novel target in sepsis~展开更多
文摘Interferon Regulatory Factor-2 (IRF-2) belongs to IRF family, was identified as a mammalian transcription factor involved in Interferon beta (IFNβ) gene regulation. Besides that IRF-2 is involved in immunomodulation, hematopoietic differentiation, cell cycle regulation and oncogenesis. We have done molecular sub-cloning and expression of recombinant murine IRF-2 as GST (Glutathione-S-Transferase)- IRF-2 fusion protein in E. coli/XL-1blue cells. Recombinant IRF-2 with GST moiety at N-terminus expressed as GST-IRF-2 (~66 kd) in E. coli along with different low molecular mass degradation products revealed approximately 30, 42, 60 and 62 kd by SDS-PAGE and Western blot, respectively. We further confirm that degradation takes place at C-terminus of the fusion protein not at N-terminus as anti-GST antibody was detecting all bands in the immunoblot. The recombinant IRF-2 was biologically active along with their degradation products in terms of their DNA binding activity as assessed by Electrophoretically Mobility Shift Assay (EMSA). We observed three different molecular mass DNA/protein complexes (1 - 3) with Virus Response Element (VRE) derived from human Interferon IFNβ gene and five different molecular mass complexes (1 - 5) with IRF-E motif (GAAAGT)4 in EMSA gel. GST only expressed from empty vector did not bind to these DNA elements. To confirm that the binding is specific, all complexes were competed out completely when challenged with 100-X fold molar excess of IRF-E oligo under cold competition. It means degradation products along with full-length protein are able to interact with VREβ as well as IRF-E motif. This means degradation products may regulate the target gene (s) activation/repression via interacting with VRE/IRF-E.
基金Supported by the National Key R and D Program of China,No.2016YFC0106604the National Natural Science Foundation of China,No.81502591
文摘AIM To understand the cellular and molecular changes inperipheral blood that can lead to the development of hepatocellular carcinoma(HCC) and provide new methods for its diagnosis and treatment.METHODS Peripheral blood mononuclear cells were isolated from the peripheral blood of HCC patients and normal controls and then analyzed by flow cytometry. The percentage of transforming growth factor-β(TGF-β)+ regulatory cells(Tregs) in the peripheral blood was measured, and the expression of TGF-β was also determined. Then, the relationship between the changes and the 5-year survival of patients was analyzed. In addition, recombinant human TGF-β(rh TGF-β) and recombinant human interleukin-6 were added to stimulate the cultured cells, and their effects on HCC were evaluated.RESULTS The expression of TGF-β and the percentage of TGF-β+ Tregs in the peripheral blood of HCC patients increased significantly compared with normal controls. Compared with the low TGF-β expression group, the high TGF-β expression group had a significantly lower 5-year survival rate, and the same result was found in the two TGF-β+ Treg groups, suggesting that TGF-β and TGF-β+ Tregs were negatively correlated with the overall survival of the patients. In addition, rh TGF-β promoted the growth of tumor cells and induced high expression levels of IL-6, which further promoted tumor proliferation.CONCLUSION The results showed that TGF-β may promote tumor growth and proliferation by inducing the production of IL-6, and TGF-β and TGF-β+ Tregs may serve as new markers for predicting a poor prognosis in HCC.
基金Supported by Grants of The Chinese State Basic Research, No.2009CB522504National Mega Projects for Infectious Diseases, No. 2008ZX10203
文摘AIM: To investigate whether DNA-dependent activator of interferon-regulatory factors (DAI) inhibits hepatitis B virus (HBV) replication and what the mechanism is. METHODS: After the human hepatoma cell line Huh7 was cotransfected with DAI and HBV expressing plas- mid, viral protein (HBV surface antigen and HBV e an- tigen) secretion was detected by enzyme-linked immu- nosorbent assay, and HBV RNA was analyzed by real- time polymerase chain reaction and Northern blotting, and viral DNA replicative intermediates were examined by Southern blotting. Interferon regulatory factor 3 (IRF3) phosphorylation and nuclear translocation were analyzed via Western blotting and immunofluorescence staining respectively. Nuclear factor-KB (NF-KB) activity induced by DAI was detected by immunofluorescence staining of P65 and dual luciferase reporter assay. Tran- swell co-culture experiment was performed in order to investigate whether the antiviral effects of DAI were dependent on the secreted cytokines. RESULTS: Viral protein secretion was significantly re- duced by 57% (P 〈 0.05), and the level of total HBV RNA was reduced by 67% (P 〈 0.05). The viral core particle-associated DNA was also dramatically down- regulated in DAI-expressing Huh7 cells. Analysis of involved signaling pathways revealed that activation of NF-KB signaling was essential for DAI to elicit antivi- ral response in Huh7 cells. When the NF-KB signaling pathway was blocked by a NF-KB signaling suppressor (I~:B^-SR), the anti-HBV activity of DAI was remarkably abrogated. The inhibitory effect of DAI was indepen- dent of IRF3 signaling and secreted cytokines. CONCLUSION: This study demonstrates that DAI can inhibit HBV replication and the inhibitory effect is asso- ciated with activation of NF-KB but independent of IRF3 and secreted cytokines.
文摘目的探讨中国人Van der Woude综合征(VWS)的临床表型及遗传学特点。方法先证者法收集14个VWS家系并进行口腔专科检查、家系调查及基因突变分析,分析不同VWS家系个体或同一家系不同个体的临床表型,绘制家系图谱,明确遗传方式及致病基因,计算表型分布频率和表型基因频率。结果 VWS家系基本符合常染色体显性遗传特征,患者多数表现为典型的VWS,致病基因为干扰素调节因子6(IRF6)。VWS表型分布频率为:唇瘘91.9%,唇腭裂73.0%,牙畸形8.1%。不同家系个体和同一家系的不同个体临床表型存在明显差异。结论收集的家系均为常染色体显性遗传,表现度变异大。中国人群VWS致病基因为IRF6,为Ⅰ型VWS。
基金supported by the Medical Technology Development Foundation of Jiangsu Provincial Health Bureau of China (H200513)Changjiang Scholars and Innovative Research Team in University (IRT0631) and National 973 Program(2006CB944005)
文摘Objective: Nonsyndromic cleft lip with or without cleft palate(NSCL/P) is a common birth defect with unclear etiology. Both genetic and environmental factors may contribute to NSCL/P. Many genes have been identified as candidate genes associated with this disease. Interferon regulatory factor 6(IRF6) gene and transforming growth factor-a(TGFA) gene seem to be crucial in the predisposition of NSCL/ P. Here we evaluated some single nucleotide polymorphisms(SNPs) loci of TGFA and IRF6 genes in Chinese nuclear families consisting of fathers, mothers and affected offspring with NSCL/P. Methods:Fifty patients of NSCL/P were confirmed by the plastic surgeons. They and their parents were included in the study, all with the informed consents. SNPs loci of TGFA and IRF6 genes were analyzed by microarray technology. Some PCR products were randomly chosen and sequenced to check microarray results. The distribution of gene type and allele frequency between patient group and parents group were compared. Then a Haplotype Relative Risk(HRR) and Transmission Disequilibrium Test(TDT) were performed. Results:The sequences of randomly selected PCR products were all consistent with the microarray results. All loci were in Hardy-Weinberg equilibrium. There were no significant differences in the distribution of genotypes and alleles between patients and their parents. Using HRR and TDT analyses the V274I of IRF6 was associated with NSCL/P, while another SNP locus oflRF6 was not. Strong evidence of linkage disequilibrium was found between the 2 SNP loci of TGFA and disease with the HRR analysis, but not with the TDT analysis. Conclusion:Our study confirms the contribution of IRF6 in the etiology of NSCL/P in populations of Asian ancestry. The association of TGFA with NSCL/P requires further research.
文摘Background The extracellular release of the danger signal high mobility group box-1 (HMGB1) has been implicated in the pathogenesis and outcomes of sepsis. Understanding the mechanisms responsible for HMGB1 release can lead to the identification of targets that may inhibit this process. The transcription factor interferon regulatory factor-1 (IRF-1) is an important mediator of innate immune responses and has been shown to participate in mortality associated with endotoxemia; however, its role in mediating the release of HMGB1 in these settings is unknown. Methods Male IRF-1 knockout (KO) and age matched C57BL/6 wild type (WT) mice were given intraperitoneal (IP) injections of lipopolysaccharide (LPS). In some experiments, 96 hours survival rates were observed. In other experiments, mice were sacrificed 12 hours after LPS administration and sera were harvested for future analysis. In in vitro study, RAW 264.7 murine monocyte/macrophage-like cells or primary peritoneal macrophage obtained from IRF-1 KO and WT mice were cultured for LPS mediated HMGB1 release analysis. And the mechanism for HMGB1 release was analyzed by immune-precipitation. Results IRF-1 KO mice experienced less mortality, and released less systemic HMGB1 compared to their WT counterparts. Exogenous administration of recombinant HMGB1 to IRF-1 KO mice returned the mortality rate to that seen originally in IRF-1 WT mice. Using cultures of peritoneal macrophages or RAW264.7 cells, in vitro LPS stimulation induced the release of HMGB1 in an IRF-1 dependent manner. And the janus associated kinase (JAK)-IRF-1 signal pathway appeared to participate in the signaling mechanisms of LPS-induced HMGB1 release by mediating acetylation of HMGBI. Conclusion IRF-1 plays a role in LPS induced release of HMGB1 and therefore may serve as a novel target in sepsis~