BACKGROUND The molecular mechanisms of colorectal cancer development and progression are far from being elucidated.AIM To investigate the role of microRNA-363-3p(miR-363-3p)in the progression of colorectal cancer.METH...BACKGROUND The molecular mechanisms of colorectal cancer development and progression are far from being elucidated.AIM To investigate the role of microRNA-363-3p(miR-363-3p)in the progression of colorectal cancer.METHODS Real-time polymerase chain reaction was performed to detect miRNA expression in human colorectal cancer tissues and paired normal colorectal tissues.PITA 6 was utilized to predict the targets of miR-363-3p.Dual-luciferase reporter system was used to validate the target of miR-363-3p.Plate colony formation assay and wound-healing assay were performed to evaluate cancer cells’clonogenic survival ability and migration ability,respectively.Cell proliferation was examined by cell counting kit-8 assay.Immunohistochemical staining was used to determine the expression level of interferon-induced transmembrane protein 1(IFITM1)in colorectal cancer tissues and adjacent tissues.The TCGA and GTEx databases were used to compare the expression levels of IFITM1 mRNA in colorectal cancer tissues and normal colorectal tissues and analyze the correlation between the expression levels of IFITM1 mRNA and overall survival and disease-free survival of patients.A colorectal cancer cell line with a deficiency of IFITM1 was constructed,and the regulation effect of IFITM1 on the clonogenic growth of colorectal cancer cells was clarified.RESULTS MiR-363-3p was decreased in colorectal cancer tissues compared to normal colorectal tissues.IFITM1 was characterized as a direct target of miR-363-3p.Overexpression of miR-363-3p led to decreased clonogenic survival,proliferation,and migration of colorectal cancer cells,which could be reversed by forced IFITM1 expression.CONCLUSION MiR-363-3p can constrain clonogenic survival,proliferation,and migration of colorectal cancer cells via targeting IFITM1.展开更多
为了解决骨形态发生蛋白10(bone morphogenetic protein 10,BMP10)前体蛋白proBMP10在中国仓鼠卵巢(CHO)细胞中由于Furin导致的表达产物不均一问题,构建了proBMP10在Furin酶切识别位点处的突变体proBMP10-1(R313K)和proBMP10-2(R316K),...为了解决骨形态发生蛋白10(bone morphogenetic protein 10,BMP10)前体蛋白proBMP10在中国仓鼠卵巢(CHO)细胞中由于Furin导致的表达产物不均一问题,构建了proBMP10在Furin酶切识别位点处的突变体proBMP10-1(R313K)和proBMP10-2(R316K),并分别将目的基因定点整合进CHO-K1-BAK-/BAX-基因组,成功构建了稳定表达目标蛋白质的重组CHO细胞株。结果表明,proBMP10-2 (R316K)不再被Furin切割,且具有生物活性,而proBMP10-1(R313K)仍然会被Furin切割。展开更多
Objective:Lung squamous cell carcinoma(LUSC)is associated with a low survival rate.Evidence suggests that bone morphogenetic proteins(BMPs)and their receptors(BMPRs)play crucial roles in tumorigenesis and progression....Objective:Lung squamous cell carcinoma(LUSC)is associated with a low survival rate.Evidence suggests that bone morphogenetic proteins(BMPs)and their receptors(BMPRs)play crucial roles in tumorigenesis and progression.However,a comprehensive analysis of their role in LUSC is lacking.Our study aimed to explore the relationship between BMPs/BMPRs expression levels and the tumorigenesis and prognosis of LUSC.Methods:The“R/Limma”package was utilized to analyze the differential expression characteristics of BMPs/BMPRs in LUSC,using data from TCGA,GTEx,and GEO databases.Concurrently,the“survminer”packages were employed to investigate their prognostic value and correlation with clinical features in LUSC.The core gene associated with LUSC progression was further explored through weighted gene correlation network analysis(WGCNA).LASSO analysis was conducted to construct a prognostic risk model for LUSC.Clinical specimens were examined by immunohistochemical analysis to confirm the diagnostic value in LUSC.Furthermore,based on the tumor immune estimation resource database and tumor-immune system interaction database,the role of the core gene in the tumor microenvironment of LUSC was explored.Results:GDF10 had a significant correlation only with the pathological T stage of LUSC,and the protein expression level of GDF10 decreased with the tumorigenesis of LUSC.A prognostic risk model was constructed with GDF10 as the core gene and 5 hub genes(HRASLS,HIST1H2BH,FLRT3,CHEK2,and ALPL)for LUSC.GDF10 showed a significant positive correlation with immune cell infiltration and immune checkpoint expression.Conclusion:GDF10 might serve as a diagnostic biomarker reflecting the tumorigenesis of LUSC and regulating the tumor immune microenvironment to guide more effective treatment for LUSC.展开更多
文摘BACKGROUND The molecular mechanisms of colorectal cancer development and progression are far from being elucidated.AIM To investigate the role of microRNA-363-3p(miR-363-3p)in the progression of colorectal cancer.METHODS Real-time polymerase chain reaction was performed to detect miRNA expression in human colorectal cancer tissues and paired normal colorectal tissues.PITA 6 was utilized to predict the targets of miR-363-3p.Dual-luciferase reporter system was used to validate the target of miR-363-3p.Plate colony formation assay and wound-healing assay were performed to evaluate cancer cells’clonogenic survival ability and migration ability,respectively.Cell proliferation was examined by cell counting kit-8 assay.Immunohistochemical staining was used to determine the expression level of interferon-induced transmembrane protein 1(IFITM1)in colorectal cancer tissues and adjacent tissues.The TCGA and GTEx databases were used to compare the expression levels of IFITM1 mRNA in colorectal cancer tissues and normal colorectal tissues and analyze the correlation between the expression levels of IFITM1 mRNA and overall survival and disease-free survival of patients.A colorectal cancer cell line with a deficiency of IFITM1 was constructed,and the regulation effect of IFITM1 on the clonogenic growth of colorectal cancer cells was clarified.RESULTS MiR-363-3p was decreased in colorectal cancer tissues compared to normal colorectal tissues.IFITM1 was characterized as a direct target of miR-363-3p.Overexpression of miR-363-3p led to decreased clonogenic survival,proliferation,and migration of colorectal cancer cells,which could be reversed by forced IFITM1 expression.CONCLUSION MiR-363-3p can constrain clonogenic survival,proliferation,and migration of colorectal cancer cells via targeting IFITM1.
文摘为了解决骨形态发生蛋白10(bone morphogenetic protein 10,BMP10)前体蛋白proBMP10在中国仓鼠卵巢(CHO)细胞中由于Furin导致的表达产物不均一问题,构建了proBMP10在Furin酶切识别位点处的突变体proBMP10-1(R313K)和proBMP10-2(R316K),并分别将目的基因定点整合进CHO-K1-BAK-/BAX-基因组,成功构建了稳定表达目标蛋白质的重组CHO细胞株。结果表明,proBMP10-2 (R316K)不再被Furin切割,且具有生物活性,而proBMP10-1(R313K)仍然会被Furin切割。
文摘Objective:Lung squamous cell carcinoma(LUSC)is associated with a low survival rate.Evidence suggests that bone morphogenetic proteins(BMPs)and their receptors(BMPRs)play crucial roles in tumorigenesis and progression.However,a comprehensive analysis of their role in LUSC is lacking.Our study aimed to explore the relationship between BMPs/BMPRs expression levels and the tumorigenesis and prognosis of LUSC.Methods:The“R/Limma”package was utilized to analyze the differential expression characteristics of BMPs/BMPRs in LUSC,using data from TCGA,GTEx,and GEO databases.Concurrently,the“survminer”packages were employed to investigate their prognostic value and correlation with clinical features in LUSC.The core gene associated with LUSC progression was further explored through weighted gene correlation network analysis(WGCNA).LASSO analysis was conducted to construct a prognostic risk model for LUSC.Clinical specimens were examined by immunohistochemical analysis to confirm the diagnostic value in LUSC.Furthermore,based on the tumor immune estimation resource database and tumor-immune system interaction database,the role of the core gene in the tumor microenvironment of LUSC was explored.Results:GDF10 had a significant correlation only with the pathological T stage of LUSC,and the protein expression level of GDF10 decreased with the tumorigenesis of LUSC.A prognostic risk model was constructed with GDF10 as the core gene and 5 hub genes(HRASLS,HIST1H2BH,FLRT3,CHEK2,and ALPL)for LUSC.GDF10 showed a significant positive correlation with immune cell infiltration and immune checkpoint expression.Conclusion:GDF10 might serve as a diagnostic biomarker reflecting the tumorigenesis of LUSC and regulating the tumor immune microenvironment to guide more effective treatment for LUSC.