The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke...The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.展开更多
The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This artic...The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This article focuses on the perspective of subject behavior,starting from analyzing the current situation and difficulties of the operation of the energy-saving renovation market for existing residential buildings in China,drawing on the practical experience of the operation of the existing residential building energy-saving renovation market abroad.Based on principles such as systematicity,humanization,feasibility,and sustainability,the article constructs an operation optimization system of the existing residential building energy-saving renovation market from the perspective of subject behavior.In order to provide a reference for the healthy and orderly operation of the existing residential building energy-saving renovation market,this paper proposes implementation strategies for optimizing the operation of the existing residential building energy-saving renovation market.Suggestions are proposed from four aspects:optimizing the market environment,innovating the financing model,building the information sharing platform,and utilizing the synergies of the main subjects.展开更多
The development of the construction industry is shifting towards low-carbon construction,so it is necessary to improve and optimize related construction concepts,methods,and processes.By improving resource and energy ...The development of the construction industry is shifting towards low-carbon construction,so it is necessary to improve and optimize related construction concepts,methods,and processes.By improving resource and energy control efficiency in building projects,minimizing construction waste,and reducing environmental impact,a foundation for the sustainable development of the industry can be established.This paper mainly analyzes the significance of low-carbon energy-saving construction technology and the control factors of construction,summarizes the status quo of the development of building energy-saving construction,and puts forward strategies for applying building energy-saving construction technology.These strategies serve to achieve low-carbon and energy-saving goals to promote the healthy development of energy-saving construction.展开更多
The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservat...The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservation and eco-friendly practices.It is essential to use energy-efficient and green materials in building designs to ensure the healthy growth of construction companies.This article discusses the advantages and principles of incorporating energy-saving materials in architectural design.It examines the strategies and critical control points for using energy-saving materials in architectural design,offering guidance for the sustainable development of the construction industry.展开更多
Green energy conservation is the mainstream trend in the current development of the construction industry.The application of energy-saving technology in building electrical system design can effectively reduce energy ...Green energy conservation is the mainstream trend in the current development of the construction industry.The application of energy-saving technology in building electrical system design can effectively reduce energy consumption,avoid unnecessary energy consumption,and truly achieve energy conservation and environmental protection.Based on this,the article elaborates on the principles of energy-saving design in building electrical systems,and actively explores the application of energy-saving technologies from different perspectives such as optimizing power supply and distribution system design,adopting high-efficiency energy-saving lighting equipment,applying renewable energy,promoting smart home technology,and improving the efficiency of building electrical equipment.展开更多
Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose compo...Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose composite with excellent optical transmittance that retained the natural shape and fiber structure of bamboo.The modified whole bamboo possessed an impressive optical transmittance of approximately 60%at 6.23 mm,illuminance of 1000 luminance(lux),water absorption stability(mass change rate less than 4%),longitudinal tensile strength(46.40 MPa),and surface properties(80.2 HD).These were attributed to not only the retention of the natural circular hollow structure of the bamboo rod on the macro,but also the complete bamboo fiber skeleton template impregnated with UV resin on the micro.Moreover,a multilayered device consisting of translucent whole bamboo,transparent bamboo sheets,and electromagnetic shielding film exhibited remarkable heat insulation and heat preservation performance as well as an electromagnetic shielding performance of 46.3 dB.The impressive optical transmittance,mechanical properties,thermal performance,and electromagnetic shielding abilities combined with the renewable and sustainable nature,as well as the fast and efficient manufacturing process,make this bamboo composite material suitable for effective application in transparent,energy-saving,and electromagnetic shielding buildings.展开更多
Utilizing the hydrazine-assisted water electrolysis for energy-efficient hydrogen production shows a promising application, which relies on the development and design of efficient bifunctional electrocatalysts. Herein...Utilizing the hydrazine-assisted water electrolysis for energy-efficient hydrogen production shows a promising application, which relies on the development and design of efficient bifunctional electrocatalysts. Herein, we reported a low-content Pt-doped Rh metallene(Pt-Rhene) for hydrazine-assisted water electrolysis towards energy-saving hydrogen(H_(2)) production, where the ultrathin metallene is constructed to provide enough favorable active sites for catalysis and improve atom utilization.Additionally, the synergistic effect between Rh and Pt can optimize the electronic structure of Rh for improving the intrinsic activity. Therefore, the required overpotential of Pt-Rhene is only 37 mV to reach a current density of-10 mA cm^(-2) in the hydrogen evolution reaction(HER), and the Pt-Rhene exhibits a required overpotential of only 11 mV to reach a current density of 10 mA cm^(-2) in the hydrazine oxidation reaction(HzOR). With the constructed HER-HzOR two-electrode system, the Pt-Rhene electrodes exhibit an extremely low voltage(0.06/0.19/0.28 V) to achieve current densities of 10/50/100 mA cm^(-2) for energy-saving H_(2) production, which greatly reduces the electrolysis energy consumption. Moreover,DFT calculations further demonstrate that the introduction of Pt modulates the electronic structure of Rh and optimizes the d-band center, thus enhancing the adsorption and desorption of reactant/intermediates in the electrocatalytic reaction.展开更多
Intelligent greenhouse can promote the development of modern agriculture, realize the high quality and high yield of crops, and also bring greater economic benefits. In accordance with the climate conditions in northw...Intelligent greenhouse can promote the development of modern agriculture, realize the high quality and high yield of crops, and also bring greater economic benefits. In accordance with the climate conditions in northwest China, a set of intelligent control system for diversified environment of solar greenhouse was designed. The system divides the annual greenhouse control into six stages according to the optimal energy saving. It uses modern detection technology to collect the greenhouse environmental temperature, environmental humidity, soil humidity, CO_(2) concentration and illumination parameters under different working modes. It uses programmable logic control technology to realize the data processing of various parameters and the action control of rolling film, wet curtain fan and other actuators. It uses KingView monitoring software to realize the monitoring and manual control of greenhouse environment parameters. The operation results indicate that the control system runs stably and basically meets the control requirements.展开更多
The long-term and effective implementation of the existing building energy efficiency renovation depends on the development of the existing building energy efficiency renovation market.The key to the development of th...The long-term and effective implementation of the existing building energy efficiency renovation depends on the development of the existing building energy efficiency renovation market.The key to the development of the existing building energy efficiency renovation market is the joint role of the market players.Starting with the analysis of the externalities and information asymmetry of the existing building energy efficiency renovation market,this paper analyzes the behavioral characteristics and influencing factors of the existing building energy efficiency renovation market entities(central government,local government,owners,energy conservation service enterprises,third-party evaluation institutions,and other market entities),and reveals the problems of the existing building energy efficiency renovation market,such as the absence of government,the lack of main power,and the lack of financing channels,Thus,it lays a platform foundation for the research on the behavior strategy and security system of the existing building energy-s aving renovation market.展开更多
The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrate...The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrated optimization.The multi-agent and multi-objective integrated optimization system framework is a powerful tool to guide the scientific decision-making of the market core structural entities in the future market practice. This paper analyzes the practical dilemma of energy-saving renovation of theexisting residential buildings in China, summarizes the practical experience of multi-subject and multi-objective integrated optimization of energy-saving renovation of the existing residential buildings in foreign countries, and puts forward beneficial practical enlightenment on the basis of comparison at home and abroad;The design principles of the target integrated optimization system have established a multi-subject and multi-objective integrated optimization system framework for the energy-saving renovation of the existing residential buildings, from six aspects: government guidance, trust consensus, value co-creation, risk sharing, revenue sharing, and social responsibility sharing. This paper proposes a multi-subject and multi-objective integrated practice strategy, in order to promote the efficient and orderly development of China's existing residential building energy-saving renovation market.展开更多
In this study,we investigated on the application of planar lightwave circuit(PLC)technology in energy-saving control of tunnel lighting.The application status of PLC in the field of energy saving followed by the neces...In this study,we investigated on the application of planar lightwave circuit(PLC)technology in energy-saving control of tunnel lighting.The application status of PLC in the field of energy saving followed by the necessity of energy saving in tunnel lighting was analyzed.Finally,the application of PLC in tunnel lighting energy-saving control around the three dimensions of system overall architecture design,control scheme,and program control process was investigated.The results showed that the system meets the requirements of control effect,robustness,and visual effect after trial operation,and is suitable for practical applications.展开更多
Interior landscape design reflects human psychological and physical needs on living and working environment, this paper from the perspective of dynamics of interior landscape design and design concept of dynamic ceili...Interior landscape design reflects human psychological and physical needs on living and working environment, this paper from the perspective of dynamics of interior landscape design and design concept of dynamic ceiling explored the means of meeting dynamic psychological needs of users, and the coordination between interior landscape design and energy-saving design of principal buildings.展开更多
It is a challenge to polish the interior surface of an additively manufactured component with complex structures and groove sizes less than 1 mm.Traditional polishing methods are disabled to polish the component,meanw...It is a challenge to polish the interior surface of an additively manufactured component with complex structures and groove sizes less than 1 mm.Traditional polishing methods are disabled to polish the component,meanwhile keeping the structure intact.To overcome this challenge,small-grooved components made of aluminum alloy with sizes less than 1 mm were fabricated by a custom-made printer.A novel approach to multi-phase jet(MPJ)polishing is proposed,utilizing a self-developed polisher that incorporates solid,liquid,and gas phases.In contrast,abrasive air jet(AAJ)polishing is recommended,employing a customized polisher that combines solid and gas phases.After jet polishing,surface roughness(Sa)on the interior surface of grooves decreases from pristine 8.596μm to 0.701μm and 0.336μm via AAJ polishing and MPJ polishing,respectively,and Sa reduces 92%and 96%,correspondingly.Furthermore,a formula defining the relationship between linear energy density and unit defect volume has been developed.The optimized parameters in additive manufacturing are that linear energy density varies from 0.135 J mm^(-1)to 0.22 J mm^(-1).The unit area defect volume achieved via the optimized parameters decreases to 1/12 of that achieved via non-optimized ones.Computational fluid dynamics simulation results reveal that material is removed by shear stress,and the alumina abrasives experience multiple collisions with the defects on the heat pipe groove,resulting in uniform material removal.This is in good agreement with the experimental results.The novel proposed setups,approach,and findings provide new insights into manufacturing complex-structured components,polishing the small-grooved structure,and keeping it unbroken.展开更多
We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and...We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and possesses different transmission conditions.Using the variational method,we obtain the well posedness of the interior transmission problem,which plays an important role in the proof of the discreteness of eigenvalues.Then we achieve the existence of an infinite discrete set of transmission eigenvalues provided that n≡1,where a fourth order differential operator is applied.In the case of n■1,we show the discreteness of the transmission eigenvalues under restrictive assumptions by the analytic Fredholm theory and the T-coercive method.展开更多
Green,energy conservation and environmental protection have increasingly become the theme of the sustained and healthy development of cities against the background of new urbanization,which indicates that the problem ...Green,energy conservation and environmental protection have increasingly become the theme of the sustained and healthy development of cities against the background of new urbanization,which indicates that the problem of building energy consumption has received growing attention.This paper explores the impact of energy-saving decorations in flexible interior space on energy-saving effect of buildings so as to broaden the horizon of energy conservation in building,thereby alleviating the problem of energy shortage in China.展开更多
Understanding digital technology requires a shift in mindset that takes into account the broader implications of design,social dynamics,environmental factors,and cultural influences.Acknowledging the fact that technol...Understanding digital technology requires a shift in mindset that takes into account the broader implications of design,social dynamics,environmental factors,and cultural influences.Acknowledging the fact that technology is not confined to the virtual domain but rather has a tangible influence on our daily lives and the surrounding environment,the extensive integration and potential of digital technologies offer a distinctive prospect to fundamentally transform our shared comprehension of architecture.Digital technologies are revolutionizing design practices,manufacturing processes,and our engagement with and understanding of the built environment,by fostering the development of novel models that promote equity and inclusivity.The application of“digital technologies”can function as a methodology for examining and expressing the possible paths of emerging digital technologies.Extrapolate the expected impact of digital technologies on the design,development,and occupancy of the environment to achieve a more sustainable future in the long run.This paper will examine the potential connections and origins of digital technology concerning modularity,as well as the implications of modularity on forthcoming architectural developments in customization.展开更多
Nowadays,the elderly have become an increasingly large group of people in China,but still many problems exist in their living space.This paper explores the physiological and psychological behavioral changes of the eld...Nowadays,the elderly have become an increasingly large group of people in China,but still many problems exist in their living space.This paper explores the physiological and psychological behavioral changes of the elderly,studies their living space requirements,and tries to put forward targeted design strategies in response.Therefore,making a better and more reasonable living space for the elderly as well as improving their living quality,finally helping the development of elderly-friendly design in China.展开更多
To further enhance the effectiveness of talent cultivation for interior design in vocational colleges,it is necessary to vigorously promote the construction of an industry-education integration model.Through this mode...To further enhance the effectiveness of talent cultivation for interior design in vocational colleges,it is necessary to vigorously promote the construction of an industry-education integration model.Through this model,the roles of both enterprises and schools can be leveraged to jointly facilitate the continuous improvement of students’professional abilities and practical skills,providing a steady stream of high-quality talents for the development of the interior design field.Therefore,this paper analyzes the current issues in interior design talent cultivation in vocational colleges from the perspective of industry-education integration and proposes corresponding improvement measures.展开更多
With the constant change of fashion trends,interior design styles are changing day by day.Based on Unity3D technology,this paper develops a system for modern interior-style design and application.Taking the residentia...With the constant change of fashion trends,interior design styles are changing day by day.Based on Unity3D technology,this paper develops a system for modern interior-style design and application.Taking the residential interior as a case study,the interior style design is achieved through 3D modeling and texture rendering and then combined with the Unity3D engine to achieve scene roaming and interactive design.The system enables designers to express design concepts more intuitively and efficiently and also improves customer participation and satisfaction.Through the experience of designers and customers,the system is verified to have more practical value than traditional interior design solutions.展开更多
It was proposed that park planning should be based on local economic development,should focus on the preservation of primitive ecological conditions and the application of low-carbon and energy-saving concepts.The pla...It was proposed that park planning should be based on local economic development,should focus on the preservation of primitive ecological conditions and the application of low-carbon and energy-saving concepts.The planning of Ancient Banyan Park in Mengshan County by following the principles of respecting local history and culture,improving functions and supporting facilities,human-centered,overall planning and all-around consideration,respecting characteristics of the local area(the planning site),satisfying operation requirements of the park,applying low-carbon and energy-saving concepts,and avoiding over-engineering,aimed at protecting natural images of the park,primitive history,culture and characteristics of the local area and providing a space for local residents' various activities.Modern aesthetic forms were combined,cultural connotation of natural environment stressed to build a landscape space system of the Ancient Banyan Park that matches well with environment of the planning site.The park was designed into 4 functional areas:sport area,fitness plaza area,garden recreational area and ancient banyan cultural area.Different functions of these subareas were taken into consideration to create conservation-minded garden landscapes which were both independent and unified.展开更多
基金supported by the Natural Science Foundation of Anhui Province(Grant Number 2208085MG181)the Science Research Project of Higher Education Institutions in Anhui Province,Philosophy and Social Sciences(Grant Number 2023AH051063)the Open Fund of Key Laboratory of Anhui Higher Education Institutes(Grant Number CS2021-ZD01).
文摘The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.
基金supported by the National Natural Science Foundation of China(Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the Education Department of China(Grant No.20JHQ095).
文摘The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This article focuses on the perspective of subject behavior,starting from analyzing the current situation and difficulties of the operation of the energy-saving renovation market for existing residential buildings in China,drawing on the practical experience of the operation of the existing residential building energy-saving renovation market abroad.Based on principles such as systematicity,humanization,feasibility,and sustainability,the article constructs an operation optimization system of the existing residential building energy-saving renovation market from the perspective of subject behavior.In order to provide a reference for the healthy and orderly operation of the existing residential building energy-saving renovation market,this paper proposes implementation strategies for optimizing the operation of the existing residential building energy-saving renovation market.Suggestions are proposed from four aspects:optimizing the market environment,innovating the financing model,building the information sharing platform,and utilizing the synergies of the main subjects.
基金Research on Zero Emission Campus Construction Based on Plant Community Optimization(Project number:KJQN202305605)。
文摘The development of the construction industry is shifting towards low-carbon construction,so it is necessary to improve and optimize related construction concepts,methods,and processes.By improving resource and energy control efficiency in building projects,minimizing construction waste,and reducing environmental impact,a foundation for the sustainable development of the industry can be established.This paper mainly analyzes the significance of low-carbon energy-saving construction technology and the control factors of construction,summarizes the status quo of the development of building energy-saving construction,and puts forward strategies for applying building energy-saving construction technology.These strategies serve to achieve low-carbon and energy-saving goals to promote the healthy development of energy-saving construction.
文摘The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservation and eco-friendly practices.It is essential to use energy-efficient and green materials in building designs to ensure the healthy growth of construction companies.This article discusses the advantages and principles of incorporating energy-saving materials in architectural design.It examines the strategies and critical control points for using energy-saving materials in architectural design,offering guidance for the sustainable development of the construction industry.
文摘Green energy conservation is the mainstream trend in the current development of the construction industry.The application of energy-saving technology in building electrical system design can effectively reduce energy consumption,avoid unnecessary energy consumption,and truly achieve energy conservation and environmental protection.Based on this,the article elaborates on the principles of energy-saving design in building electrical systems,and actively explores the application of energy-saving technologies from different perspectives such as optimizing power supply and distribution system design,adopting high-efficiency energy-saving lighting equipment,applying renewable energy,promoting smart home technology,and improving the efficiency of building electrical equipment.
基金supported by the National Natural Science Foundation of China (Nos. 32071687 and 52273247)Jiangsu Qinglan Project
文摘Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose composite with excellent optical transmittance that retained the natural shape and fiber structure of bamboo.The modified whole bamboo possessed an impressive optical transmittance of approximately 60%at 6.23 mm,illuminance of 1000 luminance(lux),water absorption stability(mass change rate less than 4%),longitudinal tensile strength(46.40 MPa),and surface properties(80.2 HD).These were attributed to not only the retention of the natural circular hollow structure of the bamboo rod on the macro,but also the complete bamboo fiber skeleton template impregnated with UV resin on the micro.Moreover,a multilayered device consisting of translucent whole bamboo,transparent bamboo sheets,and electromagnetic shielding film exhibited remarkable heat insulation and heat preservation performance as well as an electromagnetic shielding performance of 46.3 dB.The impressive optical transmittance,mechanical properties,thermal performance,and electromagnetic shielding abilities combined with the renewable and sustainable nature,as well as the fast and efficient manufacturing process,make this bamboo composite material suitable for effective application in transparent,energy-saving,and electromagnetic shielding buildings.
基金financially supported by the National Natural Science Foundation of China (No. 21972126, 21978264, 21905250, and 22278369)the Natural Science Foundation of Zhejiang Province (No. LQ22B030012 and LQ23B030010)the China Postdoctoral Science Foundation (2021M702889)。
文摘Utilizing the hydrazine-assisted water electrolysis for energy-efficient hydrogen production shows a promising application, which relies on the development and design of efficient bifunctional electrocatalysts. Herein, we reported a low-content Pt-doped Rh metallene(Pt-Rhene) for hydrazine-assisted water electrolysis towards energy-saving hydrogen(H_(2)) production, where the ultrathin metallene is constructed to provide enough favorable active sites for catalysis and improve atom utilization.Additionally, the synergistic effect between Rh and Pt can optimize the electronic structure of Rh for improving the intrinsic activity. Therefore, the required overpotential of Pt-Rhene is only 37 mV to reach a current density of-10 mA cm^(-2) in the hydrogen evolution reaction(HER), and the Pt-Rhene exhibits a required overpotential of only 11 mV to reach a current density of 10 mA cm^(-2) in the hydrazine oxidation reaction(HzOR). With the constructed HER-HzOR two-electrode system, the Pt-Rhene electrodes exhibit an extremely low voltage(0.06/0.19/0.28 V) to achieve current densities of 10/50/100 mA cm^(-2) for energy-saving H_(2) production, which greatly reduces the electrolysis energy consumption. Moreover,DFT calculations further demonstrate that the introduction of Pt modulates the electronic structure of Rh and optimizes the d-band center, thus enhancing the adsorption and desorption of reactant/intermediates in the electrocatalytic reaction.
基金Supported by Scientific Research Project of Hunan Province in 2020(20C1848)。
文摘Intelligent greenhouse can promote the development of modern agriculture, realize the high quality and high yield of crops, and also bring greater economic benefits. In accordance with the climate conditions in northwest China, a set of intelligent control system for diversified environment of solar greenhouse was designed. The system divides the annual greenhouse control into six stages according to the optimal energy saving. It uses modern detection technology to collect the greenhouse environmental temperature, environmental humidity, soil humidity, CO_(2) concentration and illumination parameters under different working modes. It uses programmable logic control technology to realize the data processing of various parameters and the action control of rolling film, wet curtain fan and other actuators. It uses KingView monitoring software to realize the monitoring and manual control of greenhouse environment parameters. The operation results indicate that the control system runs stably and basically meets the control requirements.
基金supported by the National Natural Science Foundation of China (Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the Education Department of China (Grant No. 20JHQ095)。
文摘The long-term and effective implementation of the existing building energy efficiency renovation depends on the development of the existing building energy efficiency renovation market.The key to the development of the existing building energy efficiency renovation market is the joint role of the market players.Starting with the analysis of the externalities and information asymmetry of the existing building energy efficiency renovation market,this paper analyzes the behavioral characteristics and influencing factors of the existing building energy efficiency renovation market entities(central government,local government,owners,energy conservation service enterprises,third-party evaluation institutions,and other market entities),and reveals the problems of the existing building energy efficiency renovation market,such as the absence of government,the lack of main power,and the lack of financing channels,Thus,it lays a platform foundation for the research on the behavior strategy and security system of the existing building energy-s aving renovation market.
基金supported by the National Natural Science Foundation of China (Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the EducationDepartment of China (Grant No. 20JHQ095)。
文摘The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrated optimization.The multi-agent and multi-objective integrated optimization system framework is a powerful tool to guide the scientific decision-making of the market core structural entities in the future market practice. This paper analyzes the practical dilemma of energy-saving renovation of theexisting residential buildings in China, summarizes the practical experience of multi-subject and multi-objective integrated optimization of energy-saving renovation of the existing residential buildings in foreign countries, and puts forward beneficial practical enlightenment on the basis of comparison at home and abroad;The design principles of the target integrated optimization system have established a multi-subject and multi-objective integrated optimization system framework for the energy-saving renovation of the existing residential buildings, from six aspects: government guidance, trust consensus, value co-creation, risk sharing, revenue sharing, and social responsibility sharing. This paper proposes a multi-subject and multi-objective integrated practice strategy, in order to promote the efficient and orderly development of China's existing residential building energy-saving renovation market.
文摘In this study,we investigated on the application of planar lightwave circuit(PLC)technology in energy-saving control of tunnel lighting.The application status of PLC in the field of energy saving followed by the necessity of energy saving in tunnel lighting was analyzed.Finally,the application of PLC in tunnel lighting energy-saving control around the three dimensions of system overall architecture design,control scheme,and program control process was investigated.The results showed that the system meets the requirements of control effect,robustness,and visual effect after trial operation,and is suitable for practical applications.
文摘Interior landscape design reflects human psychological and physical needs on living and working environment, this paper from the perspective of dynamics of interior landscape design and design concept of dynamic ceiling explored the means of meeting dynamic psychological needs of users, and the coordination between interior landscape design and energy-saving design of principal buildings.
基金the National Key Research and Development Program of China(2018YFA0703400)the Young Scientists Fund of the National Natural Science Foundation of China(52205447)Changjiang Scholars Program of the Chinese Ministry of Education。
文摘It is a challenge to polish the interior surface of an additively manufactured component with complex structures and groove sizes less than 1 mm.Traditional polishing methods are disabled to polish the component,meanwhile keeping the structure intact.To overcome this challenge,small-grooved components made of aluminum alloy with sizes less than 1 mm were fabricated by a custom-made printer.A novel approach to multi-phase jet(MPJ)polishing is proposed,utilizing a self-developed polisher that incorporates solid,liquid,and gas phases.In contrast,abrasive air jet(AAJ)polishing is recommended,employing a customized polisher that combines solid and gas phases.After jet polishing,surface roughness(Sa)on the interior surface of grooves decreases from pristine 8.596μm to 0.701μm and 0.336μm via AAJ polishing and MPJ polishing,respectively,and Sa reduces 92%and 96%,correspondingly.Furthermore,a formula defining the relationship between linear energy density and unit defect volume has been developed.The optimized parameters in additive manufacturing are that linear energy density varies from 0.135 J mm^(-1)to 0.22 J mm^(-1).The unit area defect volume achieved via the optimized parameters decreases to 1/12 of that achieved via non-optimized ones.Computational fluid dynamics simulation results reveal that material is removed by shear stress,and the alumina abrasives experience multiple collisions with the defects on the heat pipe groove,resulting in uniform material removal.This is in good agreement with the experimental results.The novel proposed setups,approach,and findings provide new insights into manufacturing complex-structured components,polishing the small-grooved structure,and keeping it unbroken.
基金supported by the National Natural Science Foundation of China(11571132,12301542)the Natural Science Foundation of Hubei(2022CFB725)the Natural Science Foundation of Yichang(A23-2-027)。
文摘We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and possesses different transmission conditions.Using the variational method,we obtain the well posedness of the interior transmission problem,which plays an important role in the proof of the discreteness of eigenvalues.Then we achieve the existence of an infinite discrete set of transmission eigenvalues provided that n≡1,where a fourth order differential operator is applied.In the case of n■1,we show the discreteness of the transmission eigenvalues under restrictive assumptions by the analytic Fredholm theory and the T-coercive method.
基金Sponsored by Education Science Project of the 13th Five-Year Plan of Jiangxi Province(16YB041)
文摘Green,energy conservation and environmental protection have increasingly become the theme of the sustained and healthy development of cities against the background of new urbanization,which indicates that the problem of building energy consumption has received growing attention.This paper explores the impact of energy-saving decorations in flexible interior space on energy-saving effect of buildings so as to broaden the horizon of energy conservation in building,thereby alleviating the problem of energy shortage in China.
文摘Understanding digital technology requires a shift in mindset that takes into account the broader implications of design,social dynamics,environmental factors,and cultural influences.Acknowledging the fact that technology is not confined to the virtual domain but rather has a tangible influence on our daily lives and the surrounding environment,the extensive integration and potential of digital technologies offer a distinctive prospect to fundamentally transform our shared comprehension of architecture.Digital technologies are revolutionizing design practices,manufacturing processes,and our engagement with and understanding of the built environment,by fostering the development of novel models that promote equity and inclusivity.The application of“digital technologies”can function as a methodology for examining and expressing the possible paths of emerging digital technologies.Extrapolate the expected impact of digital technologies on the design,development,and occupancy of the environment to achieve a more sustainable future in the long run.This paper will examine the potential connections and origins of digital technology concerning modularity,as well as the implications of modularity on forthcoming architectural developments in customization.
基金“Research on the Design Strategies of the Senior Community from the Perspective of Community Operation and Service Management,”University-level Research Projects in 2023(Project No.XdKY234732).
文摘Nowadays,the elderly have become an increasingly large group of people in China,but still many problems exist in their living space.This paper explores the physiological and psychological behavioral changes of the elderly,studies their living space requirements,and tries to put forward targeted design strategies in response.Therefore,making a better and more reasonable living space for the elderly as well as improving their living quality,finally helping the development of elderly-friendly design in China.
基金University-Level Teaching Reform Project“Research on Effective Models and Pathways for University-Enterprise Co-Construction of an Industry College Based on the School of Architecture and Urban Industry”(Q2310003)。
文摘To further enhance the effectiveness of talent cultivation for interior design in vocational colleges,it is necessary to vigorously promote the construction of an industry-education integration model.Through this model,the roles of both enterprises and schools can be leveraged to jointly facilitate the continuous improvement of students’professional abilities and practical skills,providing a steady stream of high-quality talents for the development of the interior design field.Therefore,this paper analyzes the current issues in interior design talent cultivation in vocational colleges from the perspective of industry-education integration and proposes corresponding improvement measures.
基金Research and Development of Wear-resistant Filament Monitoring System for Medicinal Core(Project No.:H20240260)Anqing Normal University Wanjiang Cultural Digital Protection and Intelligent Processing Key Laboratory Project,“Huangmei Opera Intelligent Digital Human Design and Application”+1 种基金Anqing Mayor Triangle Future Industry Research Institute Science and Technology Project,“Exploration of the Metaverse Design of Opera Culture and the Integration Model of Cultural Tourism”Anhui Provincial Social Science Innovation and Development Research Project,“Huangmei Opera Cultural Relics and Cultural Digital Native Protection and Utilization Innovation Research Project(Project No.:2023KY012)”。
文摘With the constant change of fashion trends,interior design styles are changing day by day.Based on Unity3D technology,this paper develops a system for modern interior-style design and application.Taking the residential interior as a case study,the interior style design is achieved through 3D modeling and texture rendering and then combined with the Unity3D engine to achieve scene roaming and interactive design.The system enables designers to express design concepts more intuitively and efficiently and also improves customer participation and satisfaction.Through the experience of designers and customers,the system is verified to have more practical value than traditional interior design solutions.
基金Supported by Scientific Research Program of Guangxi Provincial Department of Education(201010LX014)~~
文摘It was proposed that park planning should be based on local economic development,should focus on the preservation of primitive ecological conditions and the application of low-carbon and energy-saving concepts.The planning of Ancient Banyan Park in Mengshan County by following the principles of respecting local history and culture,improving functions and supporting facilities,human-centered,overall planning and all-around consideration,respecting characteristics of the local area(the planning site),satisfying operation requirements of the park,applying low-carbon and energy-saving concepts,and avoiding over-engineering,aimed at protecting natural images of the park,primitive history,culture and characteristics of the local area and providing a space for local residents' various activities.Modern aesthetic forms were combined,cultural connotation of natural environment stressed to build a landscape space system of the Ancient Banyan Park that matches well with environment of the planning site.The park was designed into 4 functional areas:sport area,fitness plaza area,garden recreational area and ancient banyan cultural area.Different functions of these subareas were taken into consideration to create conservation-minded garden landscapes which were both independent and unified.