Recently,much interest has been given tomulti-granulation rough sets (MGRS), and various types ofMGRSmodelshave been developed from different viewpoints. In this paper, we introduce two techniques for the classificati...Recently,much interest has been given tomulti-granulation rough sets (MGRS), and various types ofMGRSmodelshave been developed from different viewpoints. In this paper, we introduce two techniques for the classificationof MGRS. Firstly, we generate multi-topologies from multi-relations defined in the universe. Hence, a novelapproximation space is established by leveraging the underlying topological structure. The characteristics of thenewly proposed approximation space are discussed.We introduce an algorithmfor the reduction ofmulti-relations.Secondly, a new approach for the classification ofMGRS based on neighborhood concepts is introduced. Finally, areal-life application from medical records is introduced via our approach to the classification of MGRS.展开更多
A knowledge based company is the microcosmic foundation of the knowledge economy, the design of its organization structure should amplify the company competence to be agile to the knowledge elements. This paper expoun...A knowledge based company is the microcosmic foundation of the knowledge economy, the design of its organization structure should amplify the company competence to be agile to the knowledge elements. This paper expounds an interior market network structure which is fit for the company intellectual capital operation, and analyses this organization pattern about the reasons of existence, the effectiveness of growing up in scale, the economies of knowledge distribution and the efficiency of operation, and it will provide some beneficial theoretical guidance about how can a company improve its competition competence in the knowledge environment through organization innovation.展开更多
Based on the work of previous researchers, a new unbiased optimization algorithm—the dynamic lattice searching method with two-phase local search and interior operation (DLS-TPIO)—is proposed in this paper. This alg...Based on the work of previous researchers, a new unbiased optimization algorithm—the dynamic lattice searching method with two-phase local search and interior operation (DLS-TPIO)—is proposed in this paper. This algorithm is applied to the optimization of Lennard-Jones (LJ) clusters with N=2–650, 660, and 665–680. For each case, the putative global minimum reported in the Cambridge Cluster Database (CCD) is successfully found. Furthermore, for LJ533 and LJ536, the potential energies obtained in this study are superior to the previous best results. In DLS-TPIO, a combination of the interior operation, two-phase local search method and dynamic lattice searching method is adopted. At the initial stage of the optimization, the interior operation reduces the energy of the cluster, and gradually makes the configuration ordered by moving some surface atoms with high potential energy to the interior of the cluster. Meanwhile, the two-phase local search method guides the search to the more promising region of the configuration space. In this way the success rate of the algorithm is significantly increased. At the final stage of the optimization, in order to decrease energy of the cluster further, the positions of surface atoms are further optimized by using the dynamic lattice searching method. In addition, a simple new method to identify the central atom of icosahedral configurations is also presented. DLS-TPIO has higher computing speed and success rates than some well-known unbiased optimization methods in the literature.展开更多
文摘Recently,much interest has been given tomulti-granulation rough sets (MGRS), and various types ofMGRSmodelshave been developed from different viewpoints. In this paper, we introduce two techniques for the classificationof MGRS. Firstly, we generate multi-topologies from multi-relations defined in the universe. Hence, a novelapproximation space is established by leveraging the underlying topological structure. The characteristics of thenewly proposed approximation space are discussed.We introduce an algorithmfor the reduction ofmulti-relations.Secondly, a new approach for the classification ofMGRS based on neighborhood concepts is introduced. Finally, areal-life application from medical records is introduced via our approach to the classification of MGRS.
基金This paper is supported by the Philosophy and Social Science Foundation ofGuangxi (No.05FJY034).
文摘A knowledge based company is the microcosmic foundation of the knowledge economy, the design of its organization structure should amplify the company competence to be agile to the knowledge elements. This paper expounds an interior market network structure which is fit for the company intellectual capital operation, and analyses this organization pattern about the reasons of existence, the effectiveness of growing up in scale, the economies of knowledge distribution and the efficiency of operation, and it will provide some beneficial theoretical guidance about how can a company improve its competition competence in the knowledge environment through organization innovation.
基金supported by the National Natural Science Foundation of China (60773194, 61070235)
文摘Based on the work of previous researchers, a new unbiased optimization algorithm—the dynamic lattice searching method with two-phase local search and interior operation (DLS-TPIO)—is proposed in this paper. This algorithm is applied to the optimization of Lennard-Jones (LJ) clusters with N=2–650, 660, and 665–680. For each case, the putative global minimum reported in the Cambridge Cluster Database (CCD) is successfully found. Furthermore, for LJ533 and LJ536, the potential energies obtained in this study are superior to the previous best results. In DLS-TPIO, a combination of the interior operation, two-phase local search method and dynamic lattice searching method is adopted. At the initial stage of the optimization, the interior operation reduces the energy of the cluster, and gradually makes the configuration ordered by moving some surface atoms with high potential energy to the interior of the cluster. Meanwhile, the two-phase local search method guides the search to the more promising region of the configuration space. In this way the success rate of the algorithm is significantly increased. At the final stage of the optimization, in order to decrease energy of the cluster further, the positions of surface atoms are further optimized by using the dynamic lattice searching method. In addition, a simple new method to identify the central atom of icosahedral configurations is also presented. DLS-TPIO has higher computing speed and success rates than some well-known unbiased optimization methods in the literature.