The interior forest of protected area(PA)recover quickly in terms of greater diversity and structural complexity than peripheral and outsides, which may be due to high plant-frugivore interactions in the interior fo...The interior forest of protected area(PA)recover quickly in terms of greater diversity and structural complexity than peripheral and outsides, which may be due to high plant-frugivore interactions in the interior forest than the disturbed outsides. To describe the structural and functional differences in tree communities from interior to outside forests with in small PA, we quantitatively analyzed the vegetation of Trishna Wildlife Sanctuary, a rich primate habitat of Northeast India. Vegetation was sampled at C10 cm girth at breast height by 10 m 9 500 m sized20 line transects(10 ha) laid in the interior(N = 7),peripheral(N = 7) and outside(N = 6) zones of this sanctuary. All transects were ordinated by Principal Component Analysis based on correlation between diversity and existing disturbance indices. We found significant differences(P / 0.05) in taxonomic richness and diversity indices between the habitat. Van diagram confirmed greater unique species richness in the interior zone(64) than peripheral(28) and outside(6) zones. Overall density(ha-1) did not differed across the zones, but basal area(m2ha-1) was significantly(P / 0.01) high in peripheral zone. Vertical distribution of stem density was linearly declined across zones(r2adj[ 0.70; P / 0.01) with increase in the canopy height. Horizontal distribution of adult stems showed significant inverse quadratic relationship(r2adj[ 0.80; P / 0.001), which suggests very low density of canopy forming voluminous trees in the interior zone.Immediate protection, restoration and management of interior regions are required to preserve local plant genetic diversity and also to maintain suitable habitat for threatened wildlife.展开更多
A basin-wide ocean general circulation model of the Pacific Ocean was used to investigate how the interior restoration in the Okhotsk Sea and the isopycnal diffusion affect the circulation and intermediate water masse...A basin-wide ocean general circulation model of the Pacific Ocean was used to investigate how the interior restoration in the Okhotsk Sea and the isopycnal diffusion affect the circulation and intermediate water masses. Four numerical experiments were conducted, including a run with the same isopycnal and thickness diffusivity of 1.0×10^3 m2/s, a run employing the interior restoration of temperature and salinity in the Okhotsk Sea with a time scale of 3 months, a run that is the same as the first run except for the enhanced isopycnal mixing, and a final run with the combination of the restoration in the Okhotsk Sea and large isopycnal diffusivity. Simulated results show that the intermediate water masses reproduced in the first run are relatively weak. An increase in isopycnal diffusivity can improve the simulation of both Antarctic and North Pacific intermediate waters, mainly increasing the transport in the interior ocean, but inhibiting the outflow from the Okhotsk Sea. The interior restoration generates the reverse current from the observation in the Okhotsk Sea, whereas the simulation of the temperature and salinity is improved in the high latitude region of the Northern Hemisphere because of the reasonable source of the North Pacific Intermediate Water. A comparison of vertical profiles of temperature and salinity along 50°N between the simulation and observations demonstrates that the vertical mixing in the source region of intermediate water masses is very important.展开更多
基金finically supported by the Department of Biotechnology(DBT)Govt.of India,through DBT Network Project(BT/PR7928/NDB/52/9/2006)
文摘The interior forest of protected area(PA)recover quickly in terms of greater diversity and structural complexity than peripheral and outsides, which may be due to high plant-frugivore interactions in the interior forest than the disturbed outsides. To describe the structural and functional differences in tree communities from interior to outside forests with in small PA, we quantitatively analyzed the vegetation of Trishna Wildlife Sanctuary, a rich primate habitat of Northeast India. Vegetation was sampled at C10 cm girth at breast height by 10 m 9 500 m sized20 line transects(10 ha) laid in the interior(N = 7),peripheral(N = 7) and outside(N = 6) zones of this sanctuary. All transects were ordinated by Principal Component Analysis based on correlation between diversity and existing disturbance indices. We found significant differences(P / 0.05) in taxonomic richness and diversity indices between the habitat. Van diagram confirmed greater unique species richness in the interior zone(64) than peripheral(28) and outside(6) zones. Overall density(ha-1) did not differed across the zones, but basal area(m2ha-1) was significantly(P / 0.01) high in peripheral zone. Vertical distribution of stem density was linearly declined across zones(r2adj[ 0.70; P / 0.01) with increase in the canopy height. Horizontal distribution of adult stems showed significant inverse quadratic relationship(r2adj[ 0.80; P / 0.001), which suggests very low density of canopy forming voluminous trees in the interior zone.Immediate protection, restoration and management of interior regions are required to preserve local plant genetic diversity and also to maintain suitable habitat for threatened wildlife.
基金The National Basic Research Program(973 program)of China under contract No.2010CB951802the National Natural Science Foundation of China under contract Nos 41075091,41105087 and 40730106
文摘A basin-wide ocean general circulation model of the Pacific Ocean was used to investigate how the interior restoration in the Okhotsk Sea and the isopycnal diffusion affect the circulation and intermediate water masses. Four numerical experiments were conducted, including a run with the same isopycnal and thickness diffusivity of 1.0×10^3 m2/s, a run employing the interior restoration of temperature and salinity in the Okhotsk Sea with a time scale of 3 months, a run that is the same as the first run except for the enhanced isopycnal mixing, and a final run with the combination of the restoration in the Okhotsk Sea and large isopycnal diffusivity. Simulated results show that the intermediate water masses reproduced in the first run are relatively weak. An increase in isopycnal diffusivity can improve the simulation of both Antarctic and North Pacific intermediate waters, mainly increasing the transport in the interior ocean, but inhibiting the outflow from the Okhotsk Sea. The interior restoration generates the reverse current from the observation in the Okhotsk Sea, whereas the simulation of the temperature and salinity is improved in the high latitude region of the Northern Hemisphere because of the reasonable source of the North Pacific Intermediate Water. A comparison of vertical profiles of temperature and salinity along 50°N between the simulation and observations demonstrates that the vertical mixing in the source region of intermediate water masses is very important.