期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Research on Inter-turn Short-circuit Fault Diagnosis Method Based on High Frequency Voltage Residual for PMSM
1
作者 Xiaobao Feng Bo Wang +2 位作者 Chaohui Liu Jiayun Zeng Zheng Wang 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第3期256-265,共10页
Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of... Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of PMSM. Thus, an inter-turn short-circuit fault(ITSCF) diagnosis method based on high frequency(HF) voltage residual is proposed in this paper with proper HF signal injection. First, the analytical models of PMSM after the ITSCF are deduced. Based on the model, the voltage residual at low frequency(LF) and HF can be obtained. It is revealed that the HF voltage residual has a stronger ITSCF detection capability compared to the LF voltage residual. To obtain optimal fault signature, a 3-phase symmetrical HF voltage is injected into the machine drive system, and the HF voltage residuals are extracted. The fault indicator is defined as the standard deviation of the 3-phase HF voltage residuals. The effectiveness of the proposed ITSCF diagnosis method is verified by experiments on a triple 3-phase PMSM. It is worth noting that no extra hardware equipment is required to implement the proposed method. 展开更多
关键词 Inter-turn short-circuit fault(ITSCF) Permanent magnet synchronous machine(PMSM) High frequency(HF)injection Voltage residual fault diagnosis
下载PDF
Analysis on the fault characteristics of three-phase short-circuit for half-wavelength AC transmission lines 被引量:2
2
作者 Xuankun Song Teng Feng +4 位作者 Liu Han Travis MSmith Xinzhou Dong Wenxuan Liu Rui Zhang 《Global Energy Interconnection》 2018年第2期115-121,共7页
Half-wavelength AC transmission(HWACT) is an ultra-long distance AC transmission technology, whose electrical distance is close to half-wavelength at the system power frequency. It is very important for the constructi... Half-wavelength AC transmission(HWACT) is an ultra-long distance AC transmission technology, whose electrical distance is close to half-wavelength at the system power frequency. It is very important for the construction and operation of HWACT to analyze its fault features and corresponding protection technology. In this paper, the steady-state voltage and current characteristics of the bus bar and fault point and the steady-state overvoltage distribution along the line will be analyzed when a three-phase symmetrical short-circuit fault occurs on an HWACT line. On this basis, the threephase fault characteristics for longer transmission lines are also studied. 展开更多
关键词 Half-wavelength AC transmission fault characteristics Three-phase short-circuit fault distance OVERVOLTAGE
下载PDF
Remedial Phase-Angle Control of a Five-Phase Fault-Tolerant Permanent- Magnet Vernier Machine With Short-Circuit Fault 被引量:1
3
作者 Wenxiang Zhao Chenyu Gu +2 位作者 Qian Chen Jinghua Ji Dezhi Xu 《CES Transactions on Electrical Machines and Systems》 2017年第1期83-88,共6页
A fault-tolerant permanent-magnet vernier(FT-PMV)machine incorporates the merits of high fault-tolerant capability and high torque density.In this paper,a remedial phase-angle control(RPAC)strategy is proposed for a f... A fault-tolerant permanent-magnet vernier(FT-PMV)machine incorporates the merits of high fault-tolerant capability and high torque density.In this paper,a remedial phase-angle control(RPAC)strategy is proposed for a five-phase FT-PMV machine with short-circuit fault.Firstly,the proposed strategy can reduce the amount of unknown quantities by structuring the phase-angles of the normal phases.It can simplify the calculation of the remedial currents.Then,in order to obtain the desired torque,only the amplitudes of the remedial currents need to be calculated.Based on the principle of instantaneous electrical input power and mechanical output power balance condition,the real components are used to maintain the torque capability,while the reactive components are limited zero to minimize the torque ripple.Both simulations and experiments are presented to verify the proposed RPAC strategy. 展开更多
关键词 fault-tolerant permanent-magnet vernier(FT-PMV)machine remedial phase-angle control(RPAC) short-circuit fault.
下载PDF
Design and Optimization of Dual-Winding Fault-Tolerant Permanent Magnet Motor 被引量:2
4
作者 Xuefeng Jiang Shaoshuai Wang +1 位作者 Qiang Li Yufei Gao 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第1期45-53,共9页
To improve the performance of the traditional fault-tolerant permanent magnet(PM)motor,the design and optimal schemes of dual-winding fault-tolerant permanent magnet motor(DWFT-PMM)are proposed and investigated.In ord... To improve the performance of the traditional fault-tolerant permanent magnet(PM)motor,the design and optimal schemes of dual-winding fault-tolerant permanent magnet motor(DWFT-PMM)are proposed and investigated.In order to obtain small cogging torque ripple and inhibiting the short-circuit current,the air gap surface shape of the PM and the anti short-circuits reactance parameters are designed and optimized.According to the actual design requirements of an aircraft electrical actuation system,the parameters,finite element analysis and experimental verification of the DWFT-PMM after optimal design are presented.The research results show that the optimized DWFT-PMM owns the merits of strong magnetic isolation,physics isolation,inhibiting the short circuit current,small cogging torque ripple and high fault tolerance. 展开更多
关键词 Dual-winding motor design and optimization fault-TOLERANCE finite element analysis short-circuit fault
下载PDF
Placement optimization of Multi-Type fault current limiters based on genetic algorithm
5
作者 Guofeng Jin Jie Tan +2 位作者 Lingling Liu Chuan Wang Tiejiang Yuan 《Global Energy Interconnection》 EI CAS CSCD 2021年第5期501-512,共12页
The fault current limiter(FCL)is an effective measure for improving system stability and suppressing short-circuit fault current.Because of space and economic costs,the optimum placement of FCLs is vital in industrial... The fault current limiter(FCL)is an effective measure for improving system stability and suppressing short-circuit fault current.Because of space and economic costs,the optimum placement of FCLs is vital in industrial applications.In this study,two objectives with the same dimensional measurement unit,namely,the total capital investment cost of FCLs and circuit breaker loss related to short-circuit currents,are considered.The circuit breaker loss model is developed based on the attenuation rule of the circuit breaker service life.The circuit breaker loss is used to quantify the current-limiting effect to avoid the problem of weight selection in a multi-objective problem.The IEEE 10-generator 39-bus system in New England is used to evaluate the performance of the proposed genetic algorithm(GA)method.Comparative and sensitivity analyses are performed.The results of the optimized plan are validated through simulations,indicating the significant potential of the GA for such optimization. 展开更多
关键词 fault current limiter Genetic algorithm MULTI-OBJECTIVE Circuit breaker loss short-circuit current PLACEMENT
下载PDF
New “Intellectual Networks” (Smart Grid) for Detecting Electrical Equipment Faults, Defects and Weaknesses
6
作者 Alexander Yu. Khrennikov 《Smart Grid and Renewable Energy》 2012年第3期159-164,共6页
The most important elements of “intellectual networks” (Smart Grid) are the systems of monitoring the parameters of electrical equipment. Information-measuring systems (IMS), which described in this paper, were prop... The most important elements of “intellectual networks” (Smart Grid) are the systems of monitoring the parameters of electrical equipment. Information-measuring systems (IMS), which described in this paper, were proposed to use together with rapid digital protection against short-circuit regimes in transformer windings. This paper presents an application’s experience of LVI-testing, some results of the use of Frequency Response Analysis (FRA) to check the condition of transformer windings and infra-red control results of electrical equipment. The LVI method and short-circuit inductive reactance measurements are sensitive for detecting such faults as radial, axial winding deformations, a twisting of low-voltage or regulating winding, a losing of winding’s pressing and others. 展开更多
关键词 INTELLECTUAL NETWORKS Smart Grid Monitoring SYSTEM Electrical Equipment Information-Measuring SYSTEM Frequency Response Analysis Transformer WINDING fault Diagnostic Low Voltage Impulse Method short-circuit Inductive REACTANCE Measurement
下载PDF
Intelligent System Design for Stator Windings Faults Diagnosis:Suitable for Maintenance Work
7
作者 Lane M.Rabelo Baccarini Vinícius S.Avelar +1 位作者 Valceres Vieira R.E.Silva Gleison F.V.Amaral 《Journal of Software Engineering and Applications》 2013年第10期526-532,共7页
The short circuit is a severe fault that occurs in the stator windings. Therefore, it is very important to diagnose this type of failure in its beginning before it causes unscheduled stop and the machine loss. In this... The short circuit is a severe fault that occurs in the stator windings. Therefore, it is very important to diagnose this type of failure in its beginning before it causes unscheduled stop and the machine loss. In this context, the Support Vector Machine (SVM) is a tool of considerable importance for standard classification. From some training data, it can diagnose whether or not there is a short circuit beginning, and which is important for predictive maintenance. This work proposes a technique for early detection of a short circuit between the turns aiming at its implementation in a real plant. The paper shows simulation and experimental results, and validates the proposed technique. 展开更多
关键词 fault Diagnosis Support Vector Machines Maintenance Work Software Tool Winding short-circuit
下载PDF
考虑铁心片间短路故障的均匀化建模方法 被引量:1
8
作者 刘金辉 孟大伟 +1 位作者 夏云彦 艾萌萌 《电机与控制学报》 EI CSCD 北大核心 2020年第6期1-8,共8页
铁心叠片绝缘故障导致片间短路问题,一直是影响大型高压电机安全稳定运行故障之一。现行复杂叠片短路故障模拟计算方法,未能充分考虑频率和磁通对垂直于冲片轧制方向集肤深度影响,同时存在因叠片网格剖分计算量大而不利于工程应用。提... 铁心叠片绝缘故障导致片间短路问题,一直是影响大型高压电机安全稳定运行故障之一。现行复杂叠片短路故障模拟计算方法,未能充分考虑频率和磁通对垂直于冲片轧制方向集肤深度影响,同时存在因叠片网格剖分计算量大而不利于工程应用。提出一种针对片间故障的快速模拟方法,采用宏观结构等效电导率与磁导率的均匀连续体代替实际叠片,构建片间故障的快速模拟模型。使用T,ψ-ψ方程的三维涡流场对片间绝缘区域进行计算,并将实际叠片模型与均匀化模型的仿真结果对比。最后以大型高压电机YR630-12/1430的铁心为例,进行片间故障电流的检测实验。结果表明,有限元仿真结果与实验结果相近,该模型可以快速且有效仿真实际片间故障,满足工程需求。 展开更多
关键词 片间短路故障 均匀化理论 集肤深度 三维涡流场 有限元方法 故障电流
下载PDF
Application of thyristor controlled phase shifting transformer excitation impedance switching control to suppress short-circuit fault current level 被引量:14
9
作者 Jun LIU Xudong HAO +3 位作者 Xu WANG Yefu CHEN Wanliang FANG Shuanbao NIU 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2018年第4期821-832,共12页
Short-circuit fault current suppression is a very important issue in modern large-interconnected power networks. Conventional short-circuit current limiters, such as superconducting fault current limiters, have to inc... Short-circuit fault current suppression is a very important issue in modern large-interconnected power networks. Conventional short-circuit current limiters, such as superconducting fault current limiters, have to increase additional equipment investments. Fast power electronics controlled flexible AC transmission system(FACTS)devices have opened a new way for suppressing the fault current levels, while maintaining their normal functionalities for steady-state and transient power system operation and control. Thyristor controlled phase shifting transformer(TCPST) is a beneficial FACTS device in modern power systems, which is capable of regulating regional powerflow. The mathematical model for TCPST under different operation modes is firstly investigated in this study. Intuitively, the phase shifting angle control can adjust the equivalent impedance of TCPST, but the effect has been demonstrated to be weak. Therefore, a novel transformer excitation impedance switching(EIS) control method, is proposed for fault current suppressing, according to the impedance characteristics of TCPST. Simulation results on IEEE 14-bus system have shown considerable current limiting characteristic of the EIS control under various fault types. Also, analysis of the timing requirement during fault interruption, overvoltage phenomenon, and ancillary mechanical support issues during EIS control is discussed,so as to implement the proposed EIS control properly for fast fault current suppression. 展开更多
关键词 Excitation impedance switching(EIS) CONTROL INTERRUPTION time sequence PHASE SHIFTING angle(PSA) CONTROL short-circuit fault current suppression Thyristorcontrolled PHASE SHIFTING transformer(TCPST)
原文传递
A New Diagnostic Method for Winding Short-Circuit Fault for SRM Based on Symmetrical Component Analysis 被引量:3
10
作者 Li Xiao Hexu Sun +2 位作者 Feng Gao Shuping Hou Lipeng Li 《Chinese Journal of Electrical Engineering》 CSCD 2018年第1期74-82,共9页
Winding short-circuit is one of the more common faults in switched reluctance motors(SRM).This paper takes an in-depth look at winding short-circuit.The characteristic of non-sinusoidal intermittent single phase curre... Winding short-circuit is one of the more common faults in switched reluctance motors(SRM).This paper takes an in-depth look at winding short-circuit.The characteristic of non-sinusoidal intermittent single phase current,fundamental components are extracted to reconstruct four phase symmetrical currents based on spectrum analysis of phase currents.The method of symmetrical component is used to calculate positive and negative sequence components of reconstructed currents,where then the ratio between positive and negative sequence component is seen as a fault feature and the diagnostic criterion is proposed.The simulation and experimental results are presented to confirm the implementation of the proposed method. 展开更多
关键词 Symmetrical component spectral analysis winding short-circuit fault switched reluctance motor
原文传递
Analysis of the harmful effects to buried oil pipeline from power line short-circuit fault 被引量:1
11
作者 LU Ying-hua MO Fan 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2012年第5期124-128,共5页
Based on the transmission line theory of the buried metallic structures, the concerned harmful effects to the buried oil and natural gas pipelines caused by the power line short-circuit fault are further discussed. A ... Based on the transmission line theory of the buried metallic structures, the concerned harmful effects to the buried oil and natural gas pipelines caused by the power line short-circuit fault are further discussed. A closed-form expression of the induced voltage caused by the short-circuit fault of the ultra-high voltage power (UHVAC) transmission line is given. The transmission line model of the buried pipeline is set up and a set of formulas for calculating induced voltage on the pipeline and the parameters of the buried pipeline in actual environment condition are given. At last, the characteristic of the harm^hl effects on the buried pipeline from the power line short-circuit fault are discussed. 展开更多
关键词 ultra-high voltage (UHV) power line short-circuit fault oil pipeline transmission line model of the buried metallic structures
原文传递
Grounding Systems for Power Supply Facilities
12
作者 Vladimir Anatolevich Konusarov Evgeniy Alekseevich Shutov Tatyana Evgenievna Turukina 《Energy and Power Engineering》 2019年第1期1-14,共14页
The goal of this work is creation of optimal grounding model at the substation 10/0.4 kV of the urban power distribution network. The electric current can pose a major threat to the man’s life and health. In addition... The goal of this work is creation of optimal grounding model at the substation 10/0.4 kV of the urban power distribution network. The electric current can pose a major threat to the man’s life and health. In addition to pose a threat for health, the rise of the short circuit, as a consequence of insulation faults, poses a threat to retirement of electric systems and fire risks. The reliable grounding system design has significant implications for protection of human being as well as for electrical facility protection. The set objective was performed on the base of analytical and software-based methods. Analytical method gives a qualitative indication at each step in analysis. It also allows evaluating the values effect on the result, but the method is not susceptible of tolerable accuracy, that is why analytical method serves as initial approximation in differentiating. Specified estimation can be performed in such software package as MATLAB or ETAP. Software-based estimation is based on the finite element method (FEM), the main advantage of which is the ability to create different forms of grounding and allows obtaining distribution graphs of the step potential on the earth’s surface and touch potential. The calculation results in comparison of analytical and software-based methods taking into account the grounding optimization. There are conclusions on the most effective ground network. 展开更多
关键词 Grounding Device Current-Using Equipment short-circuit fault Single Phase-to-Ground fault Main STEP Down Substation (MSDS) TN-C TN-S TN-C-S TT IT Indirect Contact STEP Potential FEM IEEE
下载PDF
Short-circuit fault-tolerant control for five-phase fault-tolerant permanent magnet motors with trapezoidal back-EMF
13
作者 Qian Chen Yuhang Xia +2 位作者 Jiabin Wang Wenxiang Zhao Guohai Liu 《Fundamental Research》 CAS 2022年第6期964-973,共10页
When a short-circuit fault occurs in a phase,the faulty phase needs to be removed artificially from the system because of the loss of the capability to generate torque.In this case,both the short-circuit current and p... When a short-circuit fault occurs in a phase,the faulty phase needs to be removed artificially from the system because of the loss of the capability to generate torque.In this case,both the short-circuit current and phase-loss fault would generate additional torque ripples.In this study,a novel fault-tolerant control strategy is introduced to achieve low torque ripple operation of five-phase fault-tolerant permanent magnet synchronous motors with trapezoidal back electromotive force(FTPMSM-TEMF)in the event of a short-circuit fault.The key concept of this method is to compensate for the torque ripples caused by the short-circuit current and the adverse effect of the phase-loss.Based on the torque expression under fault conditions,the torque ripple caused by the short-circuit current can be offset by injecting a certain pulsating component into the torque expression in the phase-loss condition.This would result in smooth operation under fault conditions.Moreover,to track the fault-tolerant alternating currents,the model of the deadbeat current predictive control is extended and restructured for the fault condition.The effectiveness and feasibility of the proposed fault-tolerant strategy are verified by experimental results. 展开更多
关键词 short-circuit fault Five-phase fault-tolerant permanent magnet synchronous motor Trapezoidal back electromotive force fault-TOLERANT Deadbeat current predictive control
原文传递
Modeling of High-frequency Electromagnetic Oscillation for DC Fault in MMC-HVDC Systems
14
作者 Hong Shen Zhonghao Dongye +4 位作者 Lei Qi Muxue Wang Xiangyu Zhang Peng Qiu Xiaoguang Wei 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第3期1151-1160,共10页
DC short-circuit faults pose a hazard to the operation of a modular multilevel converter(MMC)-based high voltage direct current(HVDC)system,necessitating reliable fault clearing solutions with rapid reaction.However,b... DC short-circuit faults pose a hazard to the operation of a modular multilevel converter(MMC)-based high voltage direct current(HVDC)system,necessitating reliable fault clearing solutions with rapid reaction.However,because the parasitic capacitances of the main equipment oscillate with the lumped inductances of the HVDC system,strong electromagnetic oscillations with multiple frequencies occur during clearance transients.These oscillations will disturb the HVDC system’s protection and control systems.Therefore,this paper focuses on the modeling of these oscillations.First,an equivalent circuit for the MMC-based HVDC system is proposed,taking into account the parasitic capacitances of the system’s major components,such as DC reactors,connecting cables,and DC circuit breakers(DCCBs).Second,four distinct oscillation stages are postulated based on action coordination of MMCs and DCCBs,and the associated analytical equations for the oscillation frequencies are derived.Third,a 200 kV MMC-based DC converter station is subjected to an 6ms/6kA pole-to-pole(PTP)short-circuit test.Electromagnetic oscillations have a frequency range of several kHz to several hundreds of kHz.The measured waveforms correspond well with simulated results,including the parasitic characteristics.Additionally,the relative errors between the simulated and measured frequencies are less than 5%. 展开更多
关键词 DC short-circuit fault electromagnetic oscillation MMC-HVDC parasitic parameter wide-band model
原文传递
Single-ended Fault Detection Scheme Using Support Vector Machine for Multi-terminal Direct Current Systems Based on Modular Multilevel Converter
15
作者 Guangyang Zhou Xiahui Zhang +2 位作者 Minxiao Han Shaahin Filizadeh Zhi Geng 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第3期990-1000,共11页
This paper proposes a single-ended fault detection scheme for long transmission lines using support vector machine(SVM)for multi-terminal direct current systems based on modular multilevel converter(MMC-MTDC).The sche... This paper proposes a single-ended fault detection scheme for long transmission lines using support vector machine(SVM)for multi-terminal direct current systems based on modular multilevel converter(MMC-MTDC).The scheme overcomes existing detection difficulties in the protection of long transmission lines resulting from high grounding resistance and attenuation,and also avoids the sophisticated process of threshold value selection.The high-frequency components in the measured voltage extracted by a wavelet transform and the amplitude of the zero-mode set of the positive-sequence voltage are the inputs to a trained SVM.The output of the SVM determines the fault type.A model of a four-terminal DC power grid with overhead transmission lines is built in PSCAD/EMTDC.Simulation results of EMTDC confirm that the proposed scheme achieves 100%accuracy in detecting short-circuit faults with high resistance on long transmission lines.The proposed scheme eliminates mal-operation of DC circuit breakers when faced with power order changes or AC-side faults.Its robustness and time delay are also assessed and shown to have no perceptible effect on the speed and accuracy of the detection scheme,thus ensuring its reliability and stability. 展开更多
关键词 fault detection short-circuit fault multi-terminal direct current systems based on modular multilevel converter support vector machine(SVM) wavelet transform
原文传递
Experimental investigation and comparative study of interturn short-circuits and unbalanced voltage supply in induction machines
16
作者 Fatima BABAA Abdelmalek KHEZZAR Mohamed el kamel OUMAAMAR 《Frontiers in Energy》 SCIE CSCD 2013年第3期271-278,共8页
A transient model for an induction machine with stator winding turn faults on a single phase is derived using reference frame transformation theory. The negative sequence component and the 3rd harmonic are often consi... A transient model for an induction machine with stator winding turn faults on a single phase is derived using reference frame transformation theory. The negative sequence component and the 3rd harmonic are often considered as accurate indicators. However, small unbalance in the supply voltage and/or in the machine structure that exists in any real system engenders the same harmonics components. In this case, it is too difficult to distinguish between the current harmonics due to the supply voltage and those originated by inter-turn short- circuit faults. For that, to have the correct diagnosis and to increase the sensitivity and the reliability of the diagnostic system, it is crucial to provide the relationship between the inter-turn short-circuits in the stator winding and the supply voltage imbalance through an accurate mathematical model and via a series of experimental essays. 展开更多
关键词 induction machines fault indicator inter-turn short-circuit fault unbalance supply voltage
原文传递
Fast Protection Strategy for DC Transmission Lines of MMC-based MT-HVDC Grid
17
作者 Sihua Wang Lijun Zhou +2 位作者 Tian Wang Tianyu Chen Yu Wang 《Chinese Journal of Electrical Engineering》 CSCD 2021年第2期83-92,共10页
Multi-terminal high voltage DC(MT-HVDC)grid has broad application prospects in connecting different energy sources,asynchronous interconnection of power grids,remote load power supply,and other fields.At present,the k... Multi-terminal high voltage DC(MT-HVDC)grid has broad application prospects in connecting different energy sources,asynchronous interconnection of power grids,remote load power supply,and other fields.At present,the key technologies that affect the development of MT-HVDC transmission system include swift fault identification and location in the DC line and its rapid isolation.Traditional fault monitoring relies on line communication,which cannot guarantee the rapidity and reliability of protection;moreover,it may even cause device damage.A fault identification scheme based on a single-terminal transient is presented in this paper.This scheme calculates the line inductance by using the rise rate of fault current at the initial stage of the fault,and determines the occurrence of the fault by comparing the observed line inductance with the set value,which lays a foundation for calculating the location of the fault point using distance protection.A simulation model on the PSCAD/EMTDC platform is built;the simulation example verifies that the proposed scheme can identify faults under dissimilar conditions while maintaining a low error level on the premise of no communication lines so as to meet the protection requirements of the MT-HVDC grid. 展开更多
关键词 Multi-terminal high voltage DC(MT-HVDC)grid modular multilevel converter(MMC) DC circuit breaker(DCCB) bipolar short-circuit fault identification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部