期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Naphthalene diimide-based cathode interlayer material enables 20.2%efficiency in organic photovoltaic cells
1
作者 Yue Yu Jianqiu Wang +8 位作者 Zhihao Chen Yang Xiao Zhen Fu Tao Zhang Haoyu Yuan Xiao-Tao Hao Long Ye Yong Cui Jianhui Hou 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第12期4194-4201,共8页
Cathode interlayer(CIL)materials play an important role in improving the power conversion efficiency(PCE)of organic photovoltaic(OPV)cells.However,the current understanding of the structure-property relationship in CI... Cathode interlayer(CIL)materials play an important role in improving the power conversion efficiency(PCE)of organic photovoltaic(OPV)cells.However,the current understanding of the structure-property relationship in CIL materials is limited,and systematic studies in this regard are scarce.Here,two new CIL materials,NDI-PhC4 and NDI-Ph C6 were synthesized by varying the alkylamine chain length on the NDI-Ph core.Our investigation reveals a systematic variation in the physical and chemical properties of these materials with increasing alkylamine chain length.Specifically,we observe a sequential decrease in melting point and self-doping effect,accompanied by an enhancement in crystallinity.Among these CIL materials,NDI-PhC4 has a notable balance across various performance metrics.It also exhibits excellent surface modification capabilities,leading to a low surface roughness.Consequently,OPV cells based on NDI-PhC4 achieve a PCE of 20.2%,which is one of the highest reported efficiencies for OPV cells.In addition,the appropriate melting point of NDI-PhC4 contributes to the excellent stability of OPV cells. 展开更多
关键词 organic photovoltaic cells cathode interlayer materials structure-property relationship power conversion efficiency
原文传递
1.4-nm Intergrade Mineral in Soils of Snbtropical China:A Review 被引量:1
2
作者 HE JI-ZHENG XU FENG-LIN +1 位作者 LIU FAN and LI XUE-YUAN(Huazhong Agricultural University, W’uhan.430070 (China) 《Pedosphere》 SCIE CAS CSCD 1995年第2期151-156,共6页
This paper is a review of some advances in the studies on 1.4-nm intergrade mineral of soils in sub-tropical China. 1) 1.4-nm intergrade mineral occurs ubiquitously in soils of subtropical China. The 1.4-nmrnineral in... This paper is a review of some advances in the studies on 1.4-nm intergrade mineral of soils in sub-tropical China. 1) 1.4-nm intergrade mineral occurs ubiquitously in soils of subtropical China. The 1.4-nmrnineral in red soil and yellow soil is mainly 1.4-nm intergrade mineral, and in acidic yellow-brown soil (pH< 5.5) is verniiculite alone or 1.4-nm intergrade mineral together with vermiculite. The distribution and thecontent of 1 .4-nm intergrade mineral in the mountain soils are more widespread and higher than those of thecorresponding soils in horizontal zone. 2) The interlayer material of 1.4-nin intergrade mineral ui these soilsappears to be hydroxy-Al polymers instead of hydroxy-Fe, proto-imogolite or kaolin-like material. There isa significant positive correlation between Al amount extracted from the soil with sodium citrate after DCBextraction and pH value of the citrate solution after the extraction. The citrate can also extract a certainamount of silicon from the soil, but the silicon may not come from interlayer of 1.4-nm intergrade mineral.3) It was seldom studied that either vermiculite or smectite did the natural 1.4-nm intergrade mineral comefrom in soil, or it was commonly thought to come from vermiculite. A recent report has revealed that itcan come from smectite. There are some different behaviors between the 1.4-nm intergrade mineral derivedfrom vermiculite and that from smectite. For example, they exert different influences on the formation ofgibbsite. The 1.4-nm intergrade mineral derived from smectite may promote the formation of gibbsite in theyellow soil. 4) The type of 1.4-nm minerals in soils. i.e., vermiculite or 1.4-nm intergrade mineral, may besignificant to soil properties, such as soil acidity, exchangeable Al, electric charge aiiiount and specific surfacearea. Therefore, the management for the soil in which 1.4-nm mineral is mainly 1.4-nm intergrade mineralor vermiculite should be dealt with differently. 展开更多
关键词 interlayer material 1.4-nm intergrade mineral subtropical soil surface property
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部