This paper evaluates the effect of decision feedback equalizer( DFE) error propagation for400 Gb/s Ethernet( 400 GbE) electrical link in order to propose some effective methods to improve bit error rate( BER). First,a...This paper evaluates the effect of decision feedback equalizer( DFE) error propagation for400 Gb/s Ethernet( 400 GbE) electrical link in order to propose some effective methods to improve bit error rate( BER). First,an analytical model for DFE burst error length distribution is proposed and simulated based on a NRZ electrical link in which a 5-tap DFE combined with a multiple-tap feed forward equalizer( FFE) is included. Then,a detailed derivation for BER considering DFE error propagation is given based on the distribution of burst error run length and the BER performance with and without forward error correction( FEC) is simulated too. After that,this paper investigates several MUX-based FEC interleaving methods including their complexity and latency in order to improve BER further. At last,three FEC interleaving schemes are compared not only in interleaving gain,but also in hardware complexities and latencies. Simulation results show that pre-interleave bit muxing can obtain good tradeoff between BER and complexity for 400 Gb E electrical link.展开更多
基金Supported by the National Natural Science Foundation of China(No.61471119)
文摘This paper evaluates the effect of decision feedback equalizer( DFE) error propagation for400 Gb/s Ethernet( 400 GbE) electrical link in order to propose some effective methods to improve bit error rate( BER). First,an analytical model for DFE burst error length distribution is proposed and simulated based on a NRZ electrical link in which a 5-tap DFE combined with a multiple-tap feed forward equalizer( FFE) is included. Then,a detailed derivation for BER considering DFE error propagation is given based on the distribution of burst error run length and the BER performance with and without forward error correction( FEC) is simulated too. After that,this paper investigates several MUX-based FEC interleaving methods including their complexity and latency in order to improve BER further. At last,three FEC interleaving schemes are compared not only in interleaving gain,but also in hardware complexities and latencies. Simulation results show that pre-interleave bit muxing can obtain good tradeoff between BER and complexity for 400 Gb E electrical link.