Proton therapy is the most advanced radiotherapy approach in the world,and causes less damage to normal human tissue than traditional radiotherapy.Because the treatment process produces a high-energy proton beam,the p...Proton therapy is the most advanced radiotherapy approach in the world,and causes less damage to normal human tissue than traditional radiotherapy.Because the treatment process produces a high-energy proton beam,the personnel safety interlock system mainly considers measures to protect personnel from radiation hazards during beam preparation and the beam release process.Unlike other safety interlock systems,the personnel safety interlock system designed in this study focuses on the safety and stability of the system itself.The hardware and software of important interlock control loops are designed and developed according to the requirements of Safety Integrity Level 3 specified by IEC61508.A set of redundant ring networks was developed to ensure that damage to a certain network line does not affect the normal operation of the system.A set of friendly operation interfaces and data storage systems were developed to ensure that the operator can monitor the data in real time and trace the data.The personnel safety interlock system mainly includes a beam enabling function,clearance function,and emergency stop function.The system was put into actual use and successfully ensured personnel safety.展开更多
The upgrading of HI-13 tandem accelerator radioactivity protection interlock system will extend and optimize the original protection logical as well as the involved PLC control technology.A new reasonable displayed in...The upgrading of HI-13 tandem accelerator radioactivity protection interlock system will extend and optimize the original protection logical as well as the involved PLC control technology.A new reasonable displayed interface and convenient operation system will be designed.展开更多
Railway transportation system is a critical sector where design methods and techniques are defined by international standards in order to reduce possible risks to an acceptable minimum level. CENELEC 50128 strongly re...Railway transportation system is a critical sector where design methods and techniques are defined by international standards in order to reduce possible risks to an acceptable minimum level. CENELEC 50128 strongly recommends the utilization of finite state machines during system modelling stage and formal proof methods during the verifi- cation and testing stages of control algorithms. Due to the high importance of interlocking table at the design state of a sig- nalization system, the modelling and verification of inter- locking tables are examined in this work. For this purpose, abstract state machines are used as a modelling tool. The developed models have been performed in a generalized structure such that the model control can be done automatically for the interlocking systems. In this study, NuSMV is used at the verification state. Also, the consistency of the developed models has been supervised through fault injection. The developed models and software components are applied on a real railway station operated by Metro Istanbul Co.展开更多
Background Vacuum control and interlock system plays an important role in maintaining the vacuum condition for the normal operation of SESRI heavy ion accelerator.Vacuum failure of beam line at any position will cause...Background Vacuum control and interlock system plays an important role in maintaining the vacuum condition for the normal operation of SESRI heavy ion accelerator.Vacuum failure of beam line at any position will cause beam loss,experimental failure,and even serious consequences of accelerator shutdown.Methods This control system is designed and realized based on EPICS structure and PLC controller to realize the control and interlocking function of all kinds of vacuum equipment and ensure the operation and safety of the equipment.PLC level interlock and contact-based hardware interlock methods are used to realize both stability andflexibility.Results After a period of test running and actual operation,it is proved that this vacuum control and interlock system shows good stability,reliability andflexibility.Conclusion The vacuum control and interlock system in this paper realizes the design requirements of vacuum degree display,valve operability,correct and adjustable interlocking for the SESRI heavy ion accelerator vacuum system.展开更多
In recent years,the environment of railways and the systems such as CBTC(communication based train control)have been changing.To respond the changes and the needs of customers,a UTCS(unified train control system)has b...In recent years,the environment of railways and the systems such as CBTC(communication based train control)have been changing.To respond the changes and the needs of customers,a UTCS(unified train control system)has been developed to realize a system that evolves with customers.Previous type systems consist of independent components such as ATC(Automatic train control)system,electronic interlocking system,and facility monitoring system,and there are a complicated overlap of system configurations and functions and difference in concept between the systems.On the other hand,the integrated train control system consists of horizontal layers such as function layer,network layer,and terminal layer.Therefore,the system has been developed to make it simple with no unnecessary redundancy and evolving to meet the needs of customers.In this paper,we explain a method that realizes the interlocking function for CBTC system in the function layer based on the concept of“securing a train travelling path”including path blocking and routing,and evaluate the safety of the method using STAMP/STPA.展开更多
In this paper,the roof ventilation and heat insulation layer modules are combined with the roof greening,and each module is assembled through the principle of topological interlocking.The assembly of these modules doe...In this paper,the roof ventilation and heat insulation layer modules are combined with the roof greening,and each module is assembled through the principle of topological interlocking.The assembly of these modules does not require any rivets or cement mortar,and the structural stability of the overall assembled roof is achieved only through the interlocking and limiting the movements of the interlocked units.The green roof designed in this paper has strong applicability and can be applied to roofs of different shapes.Such a roof can not only meet the aesthetic needs,but also beautify the urban environment and reduce carbon emissions.展开更多
The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al ele...The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al elemental powder preplaced on the austenitic stainless steel substrate to produce a coating for further processing. The as-received coating was subjected to FSP treatment, processed by a rotary tool rod made of WC?Co alloy, to obtain sample for inspection. Microstructure, phase constitutions, hardness and wear property were investigated by methods of scanning electronic microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) microanalysis, and X-ray diffraction (XRD), hardness test alongside with dry sliding wear test. The results show that the severe deformation effect exerted on the specimen resulted in an ultra-fine grain layer of about 100μmin thickness and grain size of 1?2μm. Synergy between introduction of WC particles to the deformation layer and deformation strengthening contributes greatly to the increase in hardness and friction resistance. An interlocking bonding between the coating and matrix which significantly improves bonding strength was formed due to the severe deformation effect.展开更多
文摘Proton therapy is the most advanced radiotherapy approach in the world,and causes less damage to normal human tissue than traditional radiotherapy.Because the treatment process produces a high-energy proton beam,the personnel safety interlock system mainly considers measures to protect personnel from radiation hazards during beam preparation and the beam release process.Unlike other safety interlock systems,the personnel safety interlock system designed in this study focuses on the safety and stability of the system itself.The hardware and software of important interlock control loops are designed and developed according to the requirements of Safety Integrity Level 3 specified by IEC61508.A set of redundant ring networks was developed to ensure that damage to a certain network line does not affect the normal operation of the system.A set of friendly operation interfaces and data storage systems were developed to ensure that the operator can monitor the data in real time and trace the data.The personnel safety interlock system mainly includes a beam enabling function,clearance function,and emergency stop function.The system was put into actual use and successfully ensured personnel safety.
文摘The upgrading of HI-13 tandem accelerator radioactivity protection interlock system will extend and optimize the original protection logical as well as the involved PLC control technology.A new reasonable displayed interface and convenient operation system will be designed.
文摘Railway transportation system is a critical sector where design methods and techniques are defined by international standards in order to reduce possible risks to an acceptable minimum level. CENELEC 50128 strongly recommends the utilization of finite state machines during system modelling stage and formal proof methods during the verifi- cation and testing stages of control algorithms. Due to the high importance of interlocking table at the design state of a sig- nalization system, the modelling and verification of inter- locking tables are examined in this work. For this purpose, abstract state machines are used as a modelling tool. The developed models have been performed in a generalized structure such that the model control can be done automatically for the interlocking systems. In this study, NuSMV is used at the verification state. Also, the consistency of the developed models has been supervised through fault injection. The developed models and software components are applied on a real railway station operated by Metro Istanbul Co.
文摘Background Vacuum control and interlock system plays an important role in maintaining the vacuum condition for the normal operation of SESRI heavy ion accelerator.Vacuum failure of beam line at any position will cause beam loss,experimental failure,and even serious consequences of accelerator shutdown.Methods This control system is designed and realized based on EPICS structure and PLC controller to realize the control and interlocking function of all kinds of vacuum equipment and ensure the operation and safety of the equipment.PLC level interlock and contact-based hardware interlock methods are used to realize both stability andflexibility.Results After a period of test running and actual operation,it is proved that this vacuum control and interlock system shows good stability,reliability andflexibility.Conclusion The vacuum control and interlock system in this paper realizes the design requirements of vacuum degree display,valve operability,correct and adjustable interlocking for the SESRI heavy ion accelerator vacuum system.
文摘In recent years,the environment of railways and the systems such as CBTC(communication based train control)have been changing.To respond the changes and the needs of customers,a UTCS(unified train control system)has been developed to realize a system that evolves with customers.Previous type systems consist of independent components such as ATC(Automatic train control)system,electronic interlocking system,and facility monitoring system,and there are a complicated overlap of system configurations and functions and difference in concept between the systems.On the other hand,the integrated train control system consists of horizontal layers such as function layer,network layer,and terminal layer.Therefore,the system has been developed to make it simple with no unnecessary redundancy and evolving to meet the needs of customers.In this paper,we explain a method that realizes the interlocking function for CBTC system in the function layer based on the concept of“securing a train travelling path”including path blocking and routing,and evaluate the safety of the method using STAMP/STPA.
文摘In this paper,the roof ventilation and heat insulation layer modules are combined with the roof greening,and each module is assembled through the principle of topological interlocking.The assembly of these modules does not require any rivets or cement mortar,and the structural stability of the overall assembled roof is achieved only through the interlocking and limiting the movements of the interlocked units.The green roof designed in this paper has strong applicability and can be applied to roofs of different shapes.Such a roof can not only meet the aesthetic needs,but also beautify the urban environment and reduce carbon emissions.
基金Projects(51571214,51301205,51101126)supported by the National Natural Science Foundation of ChinaProject(P2014-07)supported by the Open Fund of State Key Laboratory of Materials Processing and Die&Mould Technology,China+4 种基金Project(20130162120001)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(K1308034-11)supported by the Changsha Municipal Science and Technology Plan,ChinaProjects(2015GK3004,2015JC3006)supported by the Science and Technology Project of Hunan Province,ChinaProject supported by the Innovation-driven Plan in Central South University,ChinaProject supported by the Independent Project of State Key Laboratory of Powder Metallurgy of Central South University,China
文摘The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al elemental powder preplaced on the austenitic stainless steel substrate to produce a coating for further processing. The as-received coating was subjected to FSP treatment, processed by a rotary tool rod made of WC?Co alloy, to obtain sample for inspection. Microstructure, phase constitutions, hardness and wear property were investigated by methods of scanning electronic microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) microanalysis, and X-ray diffraction (XRD), hardness test alongside with dry sliding wear test. The results show that the severe deformation effect exerted on the specimen resulted in an ultra-fine grain layer of about 100μmin thickness and grain size of 1?2μm. Synergy between introduction of WC particles to the deformation layer and deformation strengthening contributes greatly to the increase in hardness and friction resistance. An interlocking bonding between the coating and matrix which significantly improves bonding strength was formed due to the severe deformation effect.