期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Wire-feed laser additive manufacturing of dissimilar metals via dual molten pool interface interlocking mechanism 被引量:1
1
作者 HE Yi ZHANG XiaoHan +4 位作者 ZHAO Zhe XU ShuoHeng XIA Min ZHANG Chen HU YaoWu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第4期976-986,共11页
Intermetallic compounds produced in laser additive manufacturing are the main factors restricting the joint performance of dissimilar metals.To solve this problem,a dual molten pool interface interlocking mechanism wa... Intermetallic compounds produced in laser additive manufacturing are the main factors restricting the joint performance of dissimilar metals.To solve this problem,a dual molten pool interface interlocking mechanism was proposed in this study.Based on a dual molten pool interface interlocking mechanism,the dissimilar metals,aluminum alloy and stainless steel,were produced as single-layer and multilayer samples,using the wire-feed laser additive manufacturing directed energy deposition technology.The preferred parameters for the dual molten pool interface interlocking mechanism process of the dissimilar metals,aluminum alloy and stainless steel,were obtained.The matching relationship between the interface connection of dissimilar metals and the process parameters was established.The results demonstrated excellent mechanical occlusion at the connection interface and no apparent intermetallic compound layer.Good feature size and high microhardness were observed under a laser power of 660 W,a wire feeding speed of 55 mm/s,and a platform moving speed of 10 mm/s.Molecular dynamics simulations demonstrated a faster rate of aluminum diffusion in the aluminum alloy substrate to stainless steel under the action of the initial contact force than without the initial contact force.Thus,the dual molten pool interface interlocking mechanism can effectively reduce the intermetallic compound layer when dissimilar metals are connected in the aerospace field. 展开更多
关键词 laser additive manufacturing dissimilar metals dual molten pool interface interlocking mechanism interface connection processparameters
原文传递
Stretchable poly[2]rotaxane elastomers
2
作者 Kai Liu Xinhai Zhang +7 位作者 Dong Zhao Ruixue Bai Yongming Wang Xue Yang Jun Zhao Hao Zhang Wei Yu Xuzhou Yan 《Fundamental Research》 CAS CSCD 2024年第2期300-306,共7页
Mechanically interlocked polymers(MIPs)are promising candidates for the construction of elastomeric materials with desirable mechanical performance on account of their abilities to undergo inherent rotational and tran... Mechanically interlocked polymers(MIPs)are promising candidates for the construction of elastomeric materials with desirable mechanical performance on account of their abilities to undergo inherent rotational and translational mechanical movements at the molecular level.However,the investigations on their mechanical properties are lagging far behind their structural fabrication,especially for linear polyrotaxanes in bulk.Herein,we report stretchable poly[2]rotaxane elastomers(PREs)which integrate numerous mechanical bonds in the polymeric backbone to boost macroscopic mechanical properties.Specifically,we have synthesized a hydroxyfunctionalized[2]rotaxane that subsequently participates in the condensation polymerization with diisocyanate to form PREs.Benefitting from the peculiar structural and dynamic characteristics of the poly[2]rotaxane,the representative PRE exhibits favorable mechanical performance in terms of stretchability(∼1200%),Young’s modulus(24.6 MPa),and toughness(49.5 MJ/m^(3)).Moreover,we present our poly[2]rotaxanes as model systems to understand the relationship between mechanical bonds and macroscopic mechanical properties.It is concluded that the mechanical properties of our PREs are mainly determined by the unique topological architectures which possess a consecutive energy dissipation pathway including the dissociation of host−guest interaction and consequential sliding motion of the wheel along the axle in the[2]rotaxane motif. 展开更多
关键词 POLYROTAXANES Mechanically interlocked polymers Mechanically interlocked molecules Dynamic materials Elastomers
原文传递
Bioinspired mechanically interlocking holey graphene@SiO_(2)anode 被引量:2
3
作者 Fei Wang Xiaobin Liao +3 位作者 Haoyu Wang Yan Zhao Jian Mao Donald G.Truhlar 《Interdisciplinary Materials》 2022年第4期517-525,共9页
Mechanically interlocking structures that can enhance adhesion at the interface and regulate the stress distribution have been widely observed in biological systems.Inspired by the biological structures in the wings o... Mechanically interlocking structures that can enhance adhesion at the interface and regulate the stress distribution have been widely observed in biological systems.Inspired by the biological structures in the wings of beetles,we synthesized a holey graphene@SiO_(2)anode with strong mechanical interlocking,characterized it electrochemically,and explained its performance by finite element analysis and density functional calculations.The mechanically interlocking structure enhances lithium-ion(Li^(+))storage by transmitting the strain from SiO_(2)to the holey graphene and by a mechano-electrochemical coupling effect.The interlocking fit hinders the abscission of SiO_(2)and the distinctive structure reduces the stress and strain of SiO_(2)during(de)lithiation.The positive mechano-electrochemical coupling effect preserves the amount of electrochemically active phase(LixSi)during cycles and facilitates Li+diffusion.Therefore,the capacity shows only a slight attenuation after 8000 cycles(cycling stability),and the specific capacity is~1200 mA h g^(−1)at 5 A/g(rate-performance).This study furnishes a novel way to design high-performance Li^(+)/Na+/K^(+)/Al3^(+)anodes with large volume expansion. 展开更多
关键词 holey graphene mechanically interlocking mechano-electrochemical coupling effect simulation SiO_(2) anode
原文传递
Achieving High‑Quality Aluminum to Copper Dissimilar Metals Joint via Friction Stir Double‑Riveting Welding 被引量:2
4
作者 Shude Ji Xiao Cui +3 位作者 Lin Ma Hua Liu Yingying Zuo Zhiqing Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2023年第4期552-572,共21页
In order to achieve a high-quality joining of aluminum(Al)and copper(Cu)dissimilar metals,a new friction stir doubleriveting welding(FSDRW)with a Cu rod as the rivet was proposed,and the rotating tool with a large con... In order to achieve a high-quality joining of aluminum(Al)and copper(Cu)dissimilar metals,a new friction stir doubleriveting welding(FSDRW)with a Cu rod as the rivet was proposed,and the rotating tool with a large concave angle shoulder was specially designed.The results showed that under the thermal–mechanical effect of rotating tool,the Cu rod was deformed to be a double riveting heads structure with a Cu anchor at the upper surface of Al plate and an Al anchor above the lap interface of joint,and these two anchors greatly enhanced the mechanical interlocking of Al/Cu joint.The effective bonding interfaces were formed among the double riveting heads structure,the upper Al plate and the lower Cu plate,which contained the Cu/Cu interface and the Al/Cu interface.The Cu/Cu interface without the kissing bond and the Al/Cu interface with the rationally thin AlCu and Al_(2)Cu intermetallic compounds(IMCs)layers were beneficial to heightening the joint tensile shear strength.The maximum tensile shear load of the FSDRW joint achieved 5.52 kN,and the joint under different plunging depths of rotating tool presented a mixed mode of ductile fracture and brittle fracture.This novel FSDRW technique owns the advantages of strong mechanical interlocking and superb metallurgical bonding,and provides a new approach to acquiring a high-quality Al/Cu dissimilar metals joint. 展开更多
关键词 Al/Cu dissimilar metals joint Friction stir double-riveting welding Bonding interface Mechanical interlocking Tensile shear load
原文传递
Lighting up rotaxanes with AIEgens
5
作者 Xiao-Qin Xu Xu-Qing Wang Wei Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第3期122-133,共12页
Aiming at the construction of novel rotaxanes with desired luminescent properties for practical applications, recently the rapid development of rotaxanes decorated with aggregation-induced emission(AIE) luminogens(i.e... Aiming at the construction of novel rotaxanes with desired luminescent properties for practical applications, recently the rapid development of rotaxanes decorated with aggregation-induced emission(AIE) luminogens(i.e., AIEgens) has been witnessed. The combination of AIEgens and rotaxanes leads to the successful construction of a novel type of luminescent rotaxanes with many attractive features. In particular, the unique controllable dynamic feature of rotaxanes endows the resultant AIEgen-based rotaxanes precisely tunable emissions under external stimuli, leading to the construction of a novel type of smart luminescent materials. In this minireview, the recent progress of AIEgen-based rotaxanes has been summarized, with an emphasis on the design strategy and potential applications. 展开更多
关键词 Mechanically interlocked molecules Aggregation-induced emission Molecular shuttles F?rster resonance energy transfer Light harvesting AGGREGATE
原文传递
Microstructural formation and mechanical performance of friction stir double-riveting welded Al-Cu joints
6
作者 Shude JI Zhiqing ZHANG +3 位作者 Peng GONG Hua LIU Xiao CUI Yewei ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第8期454-471,共18页
A novel friction stir double-riveting welding(FSDRW) technology was proposed in order to realize the high-quality joining of upper aluminum(Al) and lower copper(Cu) plates,and this technology employed a Cu column as a... A novel friction stir double-riveting welding(FSDRW) technology was proposed in order to realize the high-quality joining of upper aluminum(Al) and lower copper(Cu) plates,and this technology employed a Cu column as a rivet and a specially designed welding tool with a large concave-angle shoulder. The formations, interfacial characteristics, mechanical properties and fracture features of Al/Cu FSDRW joints under different rotational velocities and dwell times were investigated. The results showed that the well-formed FSDRW joint was successfully obtained.The cylindrical Cu column was transformed into a double riveting heads structure with a Cu anchor at the top and an Al anchor at the bottom, thereby providing an excellent mechanical interlocking.The defect-free Cu/Cu interface was formed at the lap interface due to the sufficient metallurgical bonding between the Cu column and the Cu plate, thereby effectively inhibiting the propagation of crack from the intermetallic compound layer at the lap interface between the Al and Cu plates. The tensile shear load of joint was increased first and then decreased when the rotational velocity and dwell time of welding tool increased, and the maximum value was 5.52 k N. The FSDRW joint presented a mixed mode of ductile and brittle fractures. 展开更多
关键词 Dissimilar Al/Cu metals Friction stir double-riveting welding Mechanical interlocking Mechanical properties Metallurgical bonding
原文传递
A Bio-inspired Climbing Robot with Flexible Pads and Claws 被引量:12
7
作者 Aihong Ji Zhihui Zhao +3 位作者 Poramate Manoonpong Wei Wang Guangming Chen Zhendong Dai 《Journal of Bionic Engineering》 SCIE EI CSCD 2018年第2期368-378,共11页
Many animals exhibit strong mechanical interlocking in order to achieve efficient climbing against rough surfaces by using their claws in the pads. To maximally use the mechanical interlocking, an innovative robot whi... Many animals exhibit strong mechanical interlocking in order to achieve efficient climbing against rough surfaces by using their claws in the pads. To maximally use the mechanical interlocking, an innovative robot which utilizes flexible pad with claws is designed. The mechanism for attachments of the claws against rough surfaces is further revealed according to the theoretical analysis. Moreover, the effects of the key parameters on the performances of the climbing robots are obtained. It indicates that decreasing the size of the tip of the claws while maintaining its stiffness unchanged can effectively improve the attachment ability. Furthermore, the structure of robot body and two foot trajectories are proposed and the new robot is presented. Using experimental tests, it demonstrates that this robot has high stability and adaptability while climbing on vertical rough surfaces up to a speed of 4.6 cm.s^-1. 展开更多
关键词 bionic climbing robot mechanical interlocking CLAW rough surface
原文传递
Applying reticular synthesis to the design of Cu-based MOFs with mechanically interlocked linkers 被引量:1
8
作者 Alexander J.Stirk Benjamin H.Wilson +4 位作者 Christopher A.O’Keefe Hazem Amame Kelong Zhu Robert W.Schurko Stephen J.Loeb 《Nano Research》 SCIE EI CAS CSCD 2021年第2期417-422,共6页
The concept of“robust dynamics”describes the incorporation of mechanically interlocked molecules(MIMs)into metal-organic framework(MOF)materials such that large amplitude motions(e.g.,rotation or translation of a ma... The concept of“robust dynamics”describes the incorporation of mechanically interlocked molecules(MIMs)into metal-organic framework(MOF)materials such that large amplitude motions(e.g.,rotation or translation of a macrocycle)can occur inside the free volume pore of the MOF.To aid in the preparation of such materials,reticular synthesis was used herein to design rigid molecular building blocks with predetermined ordered structures starting from the well-known MOF NOTT-101.New linkers were synthesized that have a T-shape,based on a triphenylene tetra-carboxylate strut,and their incorporation into Cu(II)-based MOFs was investigated.The single-crystal structures of three new MOFs,UWCM-12(fof),β-UWCM-13(loz),UWCM-14(lil),with naked T-shaped linkers were determined;β-UWCM-13 is the first reported example of the loz topology.A fourth MOF,UWDM-14(lil)is analogous to UWCM-14(lil)but contains a[2]rotaxane linker.Variable-temperature,^(2)H solid-state NMR was used to probe the dynamics of a 24-membered macrocycle threaded onto the MOF skeleton. 展开更多
关键词 reticular chemistry metal-organic frameworks mechanically interlocked molecules ROTAXANE
原文传递
From Mechanically Interlocked Structures to Host-Guest Chemistry Based on Twisted Dimeric Architectures by Adjusting Space Constraints 被引量:1
9
作者 Xin Jiang Hao Yu +8 位作者 Junjuan Shi Qixia Bai Yaping Xu Zhe Zhang Xin-Qi Hao Bao Li Pingshan Wang Lixin Wu Ming Wang 《CCS Chemistry》 CAS 2022年第6期2127-2139,共13页
Mechanically interlocked molecules(MIMs)and host–guest chemistry have received great attention in the past few decades.However,it remains challenging to design architectures with mechanically interlocked features and... Mechanically interlocked molecules(MIMs)and host–guest chemistry have received great attention in the past few decades.However,it remains challenging to design architectures with mechanically interlocked features and construct cavities for guest molecule recognition using similar building blocks.In this study,we designed and constructed a series of novel twisted supramolecular structures by assembling various multitopic terpyridine(tpy)ligands with the same diameter and Zn(II)ions.The obtained complexes exhibited evolutional architectures and showed distinctively different space-constraint effects.Specifically,the assembled dimer SA,SB,and SBH displayed mechanically interlocked phenomena,including[2]catenane and[3]catenane,with an increase in concentration.However,no interlocked structures were observed in complexes SC and SCH constructed by hexatopic tpy ligands due to the significant space constraints.The single-crystal data of complex SCH further proved significant space constraints and illustrated the formation of a relatively closed cavity,which showed excellent host–guest properties for different calixarenes,especially high affinity for calix[6]arene. 展开更多
关键词 self-assembly TERPYRIDINE mechanical interlocking HOST-GUEST space constraints
原文传递
Whither Second-Sphere Coordination?
10
作者 Wenqi Liu Partha J.Das +1 位作者 Howard M.Colquhoun J.Fraser Stoddart 《CCS Chemistry》 CAS 2022年第3期755-784,共30页
The properties of coordination complexes are dictated by both the metals and the ligands.The use of molecular receptors as second-sphere ligands enables significant modulation of the chemical and physical properties o... The properties of coordination complexes are dictated by both the metals and the ligands.The use of molecular receptors as second-sphere ligands enables significant modulation of the chemical and physical properties of coordination complexes.In this minireview,we highlight recent advances in functional systems based on molecular receptors as second-sphere coordination ligands,as applied in molecular recognition,synthesis of mechanically interlocked molecules,separation of metals,catalysis,and biomolecular chemistry.These functional systems demonstrate that second-sphere coordination is an emerging and very promising strategy for addressing societal challenges in health,energy,and the environment. 展开更多
关键词 CATALYSIS coordination complexes mechanically interlocked molecules metal recovery molecular recognition supramolecular chemistry
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部