期刊文献+
共找到3,334篇文章
< 1 2 167 >
每页显示 20 50 100
Mantle Driven Early Eocene Magmatic Flare-up of the Gangdese Arc, Tibet: A Case Study on the Nymo Intrusive Complex
1
作者 MA Xuxuan Joseph GMEERT +4 位作者 CAO Wenrong TIAN Zuolin LIU Dongliang XIONG Fahui LI Haibing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第4期878-903,共26页
Magmatic periodicity is recognized in continental arcs worldwide, but the mechanism responsible for punctuated arc magmatism is controversial. Continental arcs in the Trans-Himalayan orogenic system display episodic m... Magmatic periodicity is recognized in continental arcs worldwide, but the mechanism responsible for punctuated arc magmatism is controversial. Continental arcs in the Trans-Himalayan orogenic system display episodic magmatism and the most voluminous flare-up in this system was in early Eocene during the transition from subduction to collision. The close association of the flare-up with collision is intriguing. Our study employs zircon Lu-Hf and bulk rock Sr-Nd isotopes, along with mineral geochemistry, to track the melt sources of the Nymo intrusive complex and the role of mantle magma during the early Eocene flare-up of the Gangdese arc, Tibet. The Nymo intrusive complex is composed of gabbronorite, diorite, quartz diorite, and granodiorite which define an arc-related calc-alkaline suite. Zircon U-Pb ages reveal that the complex was emplaced between ~50–47 Ma. Zircon Hf isotopes yield εHf(t) values of 8.2–13.1, while whole-rock Sr and Nd isotopes yield εNd(t) values of 2.7–6.5 indicative of magmatism dominated by melting of a juvenile mantle source with only minor crustal assimilation(~15%–25%) as indicated by assimilation and fractional crystallization modeling. Together with published data, the early Eocene magmatic flare-up was likely triggered by slab breakoff of subducted oceanic lithosphere at depths shallower than the overriding plate. The early Eocene magmatic flare-up may have contributed to crustal thickening of the Gangdese arc. This study provides important insights into the magmatic flare-up and its significant role in the generation of large batholiths during the transition from subduction to collision. 展开更多
关键词 MANTLE magmatic flare-up subduction–collision transition Nymo intrusive complex GANGDESE TIBET
下载PDF
Spatiotemporal mapping of(ultra‐)mafic magmatic mine areas:Implications of economic and political realities in China
2
作者 Heling Li Liang Tang +3 位作者 Tim T.Werner Zhengmeng Hou Fan Meng Jingjing Li 《Deep Underground Science and Engineering》 2024年第1期91-102,共12页
The spatiotemporal extension/expansion of mine areas is affected by multiple factors.So far,very little has been done to examine the interaction between mine areas and political or economic realities.The(ultra‐)mafic... The spatiotemporal extension/expansion of mine areas is affected by multiple factors.So far,very little has been done to examine the interaction between mine areas and political or economic realities.The(ultra‐)mafic magmatic mines in China played a specific role in supporting national development and providing an ideal research subject for monitoring their interrelationship.In this study,remote sensing and mining‐related GIS data were used to identify and analyze 1233(ultra‐)mafic magmatic mine area polygons in China,which covered approximately 322.96 km2 of land and included a V–Ti–Fe mine,a copper–nickel mine,a chromite mine,an asbestos mine,and a diamond mine.It was found that(1)the areal expansion of mines is significantly related to the mine types,perimeter,topography,and population density.(2)The mine area variation also reflects market and policy realities.The temporal expansion of the mine area from 2010 to 2020 followed an S‐shaped pattern(with the turning point occurring in 2014),closely related to iron overcapacity and tightened mining policies.(3)The complexity(D)of the mine area may reflect mine design and excavation practices.To be specific,lower D indicates early‐stage or artisanal/small‐scale mining,whereas higher D represents large‐scale mining.This study demonstrates that the detailed mapping of mine land can serve as an indicator to implement miningrelated market and policy changes.The(ultra‐)mafic mines area data set can be accessed at https://zenodo.org/record/7636616#.Y-p0uXaZOa0. 展开更多
关键词 complexity mine area mining and socioeconomic interaction spatiotemporal distribution (ultra‐)mafic magmatic mine
下载PDF
Geology and mineralization of the Hongqiling large magmatic nickel-copper-cobalt deposit(22×10^(4)t)in Jilin Province,China:A review
3
作者 Cong Chen Yu-chao Gu +14 位作者 Di Zhang Tao-tao Wu Ai Li Yun-sheng Ren Qing-qing Shang Jian Zhang Xiong-fei Bian Fei Su Jia-lin Yang Qiu-shi Sun Xiao-hai Li Wan-zhen Liu Zhen-ming Sun Sen Zhang Yu-hui Feng 《China Geology》 CAS CSCD 2024年第4期762-796,共35页
The Hongqiling large nickel-copper-cobalt deposit(hereafter referred to as the Hongqiling deposit),a typical mafic-ultramafic copper-nickel deposit in China,boasts proven Ni(Ni)resources of approximately 22×10^(4... The Hongqiling large nickel-copper-cobalt deposit(hereafter referred to as the Hongqiling deposit),a typical mafic-ultramafic copper-nickel deposit in China,boasts proven Ni(Ni)resources of approximately 22×10^(4)t,associated copper resources of 2×10^(4)t,and associated cobalt(Co)resources of 0.5×10^(4)t,with Ni reserves ranking 10th among China's magmatic nickel deposits.Geotectonically,the Hongqiling deposit is situated in the superimposed zone between the Xing'an-Mongolian orogenic belt and the circum-Western Pacific's active continental margin belt.Its ore-bearing plutons occur within the metamorphic rocks of the Ordovician Hulan Group,with the emplacement of plutons and the locations of orebodies governed by the deep-seated Huifahe fault and its secondary NW-trending Fujia-Hejiagou-Beixinglong-Changsheng fault zone.In the deposit,the rock assemblages of ore-bearing plutons predominantly encompass gabbro-pyroxenite-olivine pyroxenite-pyroxene peridotite(pluton No.1)and norite-orthopyroxenite-harzburgite(pluton No.7),with ore-bearing lithofacies consisting primarily of olivine pyroxenite and pyroxenite facies.The Hongqiling deposit hosts stratoid,overhanging lentoid,veined,and pure-sulfide veined orebodies.Its ores principally contain metallic minerals including pyrrhotite,pentlandite,chalcopyrite,violarite,and pyrite.Despite unidentified magma sources of ore-bearing mafic-ultramafic rocks,it is roughly accepted that the magmatic evolution in the Hongqiling deposit primarily involved fractional crystallization and crustal contamination.The ore-forming materials were primarily derived from the upper mantle,mixed with minor crustal materials.The ore-bearing mafic-ultramafic rocks in the deposit,primarily emplaced during the Indosinian(208-239 Ma),were formed in an intense extension setting followed by the collisional orogeny between the North China Plate and the Songnen-Zhangguangcai Range Block during the Middle-Late Triassic.From the perspective of the metallogenic geological setting,surrounding rocks,ore-controlling structures,and rock assemblages,this study identified one favorable condition and seven significant indicators for prospecting for Hongqiling-type nickel deposits and developed a prospecting model of the Hongqiling deposit.These serve as valuable references for exploring similar nickel deposits in the region,as well as the deep parts and margins of the Hongqiling deposit. 展开更多
关键词 Nickel-copper-cobalt deposit Fractional crystallization Crustal contamination magmatic MINERALIZATION Re-Os isotopic age Sulfur isotopic Metallogenic mode Prospecting model Western Pacific’s active continental margin Mineral exploration engineering Hongqiling Jilin
下载PDF
Magmatic Event at the End of the Archean in Eastern Hebei Province and Its Geological Implication 被引量:91
4
作者 GENG Yuansheng LIU Fulai YANG Chonghui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第6期819-833,共15页
By using the SHRIMP U-Pb and single zircon stepwise evaporation methods, the authors have obtained some results for granitoids from eastern Hebei Province. The Yuhuzhai hyperthene tonalitic granite was formed 2550 Ma ... By using the SHRIMP U-Pb and single zircon stepwise evaporation methods, the authors have obtained some results for granitoids from eastern Hebei Province. The Yuhuzhai hyperthene tonalitic granite was formed 2550 Ma ago, the Qingyangshu gabbroic gneiss 2536 Ma, the Yinmahe granodioritic gneiss near Lücao, Lulong County, 2533 Ma, the gabbro-dioritic gneiss near Longwan, Qianxi County, 2518-2515 Ma, the Qiuhuayu trondjemitic gneiss at Zunhua 2515 Ma, the Xiaoguanzhuang tonalitic gneiss at Zunhua 2495 Ma, and the Cuizhangzi gneiss in Qianxi County 2492 Ma. These geochronilogical data demonstrate that, though diverse in composition, type and origin, the granitic gneisses in eastern Hebei Province were emplaced and crystallized in a rather short period of magmatic activity. The formation of such a great amount of gneisses in this small time gap suggests that it was a critical crust accretion stage at the end of Neoarchean. The fact that granitoids of various types occurred at the same time implies a large-scale underplating (mantle plume) activity, which was then responsible for the crust accretion. 展开更多
关键词 ORTHOGNEISS magmatic event NEOARCHEAN zircon age eastern Hebei Province
下载PDF
Magmatic Ni-Cu-(PGE) deposits in magma plumbing systems:Features,formation and exploration 被引量:9
5
作者 Xieyan Song Yushan Wang Liemeng Chen 《Geoscience Frontiers》 SCIE CAS 2011年第3期375-384,共10页
The three most crucial factors for the formation of large and super-large magmatic sulfide deposits are: (1) a large volume of mantle-derived mafic-ultramafic magmas that participated in the formation of the deposi... The three most crucial factors for the formation of large and super-large magmatic sulfide deposits are: (1) a large volume of mantle-derived mafic-ultramafic magmas that participated in the formation of the deposits; (2) fractional crystallization and crustal contamination, particularly the input of sulfur from crustal rocks, resulting in sulfide immiscibility and segregation; and (3) the timing of sulfide concentration in the intrusion. The super-large magmatic Ni-Cu sulfide deposits around the world have been found in small mafic-ultramafic intrusions, except for the Sudbury deposit. Studies in the past decade indicated that the intrusions hosting large and super-large magmatic sulfide deposits occur in magma conduits, such as those in China, including Jinchuan (Gansu), Yangliuping (Sichuan), Kalatongke (Xinjiang), and Hongqiling (Jilin). Magma conduits as open magma systems provide a perfect environment for extensive concentration of immiscible sulfide melts, which have been found to occur along deep regional faults. The origin of many mantle-derived magmas is closely associated with mantle plumes, intracontinental rifts, or post-collisional extension. Although it has been confirmed that sulfide immiscibility results from crustal contamination, grades of sulfide ores are also related to the nature of the parental magmas, the ratio between silicate magma and immiscible sulfide melt, the reaction between the sulfide melts and newly injected silicate magmas, and fractionation of the sulfide melt. The field relationships of the ore-bearing intrusion and the sulfide ore body are controlled by the geological features of the wall rocks. In this paper, we attempt to demonstrate the general characteristics, formation mechanism,tectonic settings, and indicators of magmatic sulfide deposits occurring in magmatic conduits which would provide guidelines for further exploration. 展开更多
关键词 magmatic Ni-Cu sulfidedeposit Magma conduit Sulfide immiscibility Tectonic extension China
下载PDF
Classification of Magmatic Sulphide Deposits in China and Mineralization of Small Intrusions 被引量:6
6
作者 TANG Zhongli YAN Haiqing +1 位作者 JIAO Jiangang LI Xiaohu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第3期412-419,共8页
Many important metal resources, such as Ni (Cu, Co), PGE, exist in magmatic sulfide deposits, are a hot spot in geological research. We divide the magmatic sulphide deposits in China into four types according to the... Many important metal resources, such as Ni (Cu, Co), PGE, exist in magmatic sulfide deposits, are a hot spot in geological research. We divide the magmatic sulphide deposits in China into four types according to their tectonic setting, intruding mode, ore deposit mode, main metallogenic elements. The four types are as follows: (1) Small-intrusion deposits in paleo-continent; (2) Smallintrusion deposits in continental flood basalt; (3) Small-intrusion deposits in orogenic belt; and (4) The deposits associated with ophiolites. On the basis of the classification, we put forward that the main magmatic metallogenic type in China is small-intrusion metallogeny, and describe its characteristics from small intrusions related concept, three geologic settings, three volcanic-intrusive assemblages and metallogenic key factors. According to the experiences of prospecting at home and abroad, we point out that there is big potential in prospecting small-intrusion deposits, which need further study. At last, we indicate that small-intrusion metallogeny not only widely distributes in mafic-ultramafic intrusions, but also has an important economic value and scientific significance in intermediate-acid intrusions. 展开更多
关键词 magmatic sulfide deposits CLASSIFICATION small intrusions METALLOGENESIS
下载PDF
Surplus Space Method: A New Numerical Model for Prediction of Shallow-seated Magmatic Bodies 被引量:8
7
作者 DENGJun HUANGDinghua +4 位作者 WANGQingfeit WANLi YAOLingqing GAOBangfei LiuYan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第6期1245-1249,共5页
Based on the data of field measurement and drilling in the Tongling area, a series of numerical simulations are carried out by using the 'Surplus Space Method' (SSM), which is first put forward in this paper a... Based on the data of field measurement and drilling in the Tongling area, a series of numerical simulations are carried out by using the 'Surplus Space Method' (SSM), which is first put forward in this paper and applied to predict the shallow-seated magmatic bodies. The results of the numerical simulations show the existence and the 3-D shape of a conical magmatic structure at a depth of-1000 m beneath the center of the area: its top offsets southwards and bifurcates to several branches, while its lower part stretches northeastwards and contracts rapidly to a point at about -1000 m depth. This point is reckoned to be a 'sink' of magma system, transferring ore materials and heat energy from the deep magma chamber to the sub-surface apophyses. The preliminary application of the SSM proves that it may be developed as a new detection means for determining the existence of shallow-seated magmatic bodies and analyzing their three-dimensional features. 展开更多
关键词 Tongling area shallow-seated magmatic bodies surplus space method numerical simulation
下载PDF
Time scales and length scales in magma ?ow pathways and the origin ofmagmatic Ni-Cu-PGE ore deposits 被引量:4
8
作者 Stephen J.Barnes Jesse C.Robertson 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第1期77-87,共11页
Ore forming processes involve the redistribution of heat, mass and momentum by a wide range of processes operating at different time and length scales. The fastest process at any given length scale tends to be the dom... Ore forming processes involve the redistribution of heat, mass and momentum by a wide range of processes operating at different time and length scales. The fastest process at any given length scale tends to be the dominant control. Applying this principle to the array of physical processes that operate within magma flow pathways leads to some key insights into the origins of magmatic Ni-Cu-PGE sulfide ore deposits. A high proportion of mineralised systems, including those in the super-giant Noril'sk-Talnakh camp, are formed in small conduit intrusions where assimilation of country rock has played a major role. Evidence of this process is reflected in the common association of sulfides with varitextured contaminated host rocks containing xenoliths in varying stages of assimilation. Direct incorporation of S-bearing country rock xenoliths is likely to be the dominant mechanism for generating sulfide liquids in this setting. However, the processes of melting or dissolving these xenoliths is relatively slow compared with magma flow rates and, depending on xenolith lithology and the composition of the carrier magma, slow compared with settling and accumulation rates. Chemical equilibration between sulfide droplets and silicate magma is slower still, as is the process of dissolving sulfide liquid into initially undersaturated silicate magmas. Much of the transport and deposition of sulfide in the carrier magmas may occur while sulfide is still incorporated in the xenoliths, accounting for the common association of magmatic sulfide-matrix ore breccias and contaminated "taxitic" host rocks. Effective upgrading of so-formed sulfide liquids would require repetitive recycling by processes such as reentrainment, back flow or gravity flow operating over the lifetime of the magma transport system as a whole. In contrast to mafic-hosted systems, komatiite-hosted ores only rarely show an association with externally-derived xenoliths, an observation which is partially due to the predominant formation of ores in lava flows rather than deep-seated intrusions, but also to the much shorter timescales of key component systems in hotter, less viscous magmas. Nonetheless, multiple cycles of deposition and entrainment are necessary to account for the metal contents of komatiite-hosted sulfides. More generally, the time and length scale approach introduced here may be of value in understanding other igneous processes as well as non-magmatic mineral systems. 展开更多
关键词 magmatic ore deposits ASSIMILATION INTRUSIONS Nickel Norilsk KOMATIITES
下载PDF
Rare Earths of Magmatic Rocks in Yanshanian Stage in Adjacent Region of Anhui and Jiangxi Provinces, Jiangnan Uplift 被引量:5
9
作者 袁峰 周涛发 +2 位作者 岳书仓 朱光 侯明金 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第5期591-594,共4页
The geochemical characteristics of rare earth elements of magmatic rocks of Yanshanian stage were studied in the south of Anhui Province and northeast of Jiangxi Province, Jiangnan Uplift. The result shows that the ma... The geochemical characteristics of rare earth elements of magmatic rocks of Yanshanian stage were studied in the south of Anhui Province and northeast of Jiangxi Province, Jiangnan Uplift. The result shows that the magmatic rocks of Yanshanian stage in the south of Anhui Province are the typical crust source type and those in the northeast of Jiangxi Province have the characteristics of mantle source type. So the polymetal deposits having relation to the magmatic rocks of Yanshanian stage in the northeast of Jiangxi Province were developed better than those in the south of Anhui Province. The research results of the rare earth elements are confirmed by the studies of geophysics,tectonic setting and stable isotope at the same time. It also indicates that the rare earth elements are the effective approach to tracing the material sources of magmatic rocks. 展开更多
关键词 GEOCHEMISTRY magmatic rock Jiangnan Uplift rare earths
下载PDF
Advances in Research of Mineral Chemistry of Magmatic and Hydrothermal Biotites 被引量:5
10
作者 TANG Pan CHEN Yuchuan +5 位作者 TANG Juxing WANG Ying ZHENG Wenbao LENG Qiufeng LIN Bin WU Chunneng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第6期1947-1966,共20页
Biotite is an important hydrated ferromagnesian silicate mineral in igneous rocks and porphyry deposits.The determination of chemical compositions of biotite plays an important role in both igneous petrology and ore f... Biotite is an important hydrated ferromagnesian silicate mineral in igneous rocks and porphyry deposits.The determination of chemical compositions of biotite plays an important role in both igneous petrology and ore forming processes.This paper summarizes research results of magmatic and hydrothermal biotites exemplified by the Lakange porphyry Cu–Mo deposit and the Qulong porphyry Cu deposit in the Gangdese porphyry–skarn metallogenic belt,Tibet.Biotite mineral chemistry can provide critical insights into classification,geothermometer,geothermobarometry,oxygen fugacity,petrogenesis and tectonic setting,evaluating magmatic-hydrothermal process by halogen and halogen fugacity ratios,and distinguishing between barren and mineralized rocks.Biotite provides the latest mineralogical evidence on metallogenic prognosis and prospecting evaluation for porphyry Cu polymetallic deposits or magmatic hydrothermal deposits. 展开更多
关键词 magmatic biotites hydrothermal biotites mineral chemistry porphyry deposit Lakange QULONG GANGDESE
下载PDF
Petrogenesis of Middle-Eocene granitoids and their Mafic microgranular enclaves in central Urmia-Dokhtar Magmatic Arc(Iran): Evidence for interaction between felsic and mafic magmas 被引量:5
11
作者 Kazem Kazemi Ali Kananian +1 位作者 Yilin Xiao Fatemeh Sarjoughian 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第2期705-723,共19页
Whole rock major and trace element geochemistry together with zircon U-Pb ages and Sr-Nd isotope compositions for the Middle Eocene intrusive rocks in the Haji Abad region are presented. The granitoid hosts, including... Whole rock major and trace element geochemistry together with zircon U-Pb ages and Sr-Nd isotope compositions for the Middle Eocene intrusive rocks in the Haji Abad region are presented. The granitoid hosts, including granodiorite and diorite, yielded zircon U-Pb ages with a weighted mean value of 40.0 ± 0.7 Ma for the granodiorite phase. Mafic microgranular enclaves(MMEs) are common in these plutons, and have relatively low SiO_2 contents(53.04-57.08 wt.%) and high Mg#(42.6-60.1), probably reflecting a mantle-derived origin. The host rocks are metaluminous(A/CNK = 0.69-1.03), arc-related calc-alkaline, and I-type in composition, possessing higher SiO_2 contents(59.7-66.77 wt.%) and lower Mg#(38.6-52.2); they are considered a product of partial melting of the mafic lower crust. Chondritenormalized REE patterns of the MMEs and granitoid hosts are characterized by LREE enrichment and show slight negative Eu anomalies(Eu/Eu* = 0.60-0.93). The host granodiorite samples yield(^(87)Sr/^(86)Sr);ratios ranging from 0.70498 to 0.70591,positive eNd(t) values varying from +0.21 to +2.3, and TDM2 ranging from 760 to 909 Ma, which is consistent with that of associated mafic microgranular enclaves(^(87)Sr/^(86)Sr)i = 0.705111-0.705113, ε_(Nd)(t)= +2.14 to +2.16, T_(DM2) = 697-785 Ma). Petrographic and geochemical characterization together with bulk rock Nd-Sr isotopic data suggest that host rocks and associated enclaves originated by interaction between basaltic lower crust-derived felsic and mantlederived mafic magmas in an active continental margin arc environment. 展开更多
关键词 Geochemistry U-Pb geochronology GRANITOID Haji Abad Low angle SUBDUCTION Urumieh-Dokhtar magmatic Arc
下载PDF
Rare Earth Element Geochemistry on Magmatic Rocks and Gold Deposits in Shizishan Ore-Field of Tongling, China 被引量:5
12
作者 徐晓春 陆三明 +2 位作者 谢巧勤 储国正 熊亚平 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第5期617-625,共9页
REE geochemical characteristics of the magmatic rocks and gold deposits in Shizishan ore-field of Tongling were studied. Three types of the magmatic rocks have almost the same chondrite-normalized REE patterns, Eu and... REE geochemical characteristics of the magmatic rocks and gold deposits in Shizishan ore-field of Tongling were studied. Three types of the magmatic rocks have almost the same chondrite-normalized REE patterns, Eu and Ce anomalous values, and ∑REE, ∑LREE/∑HREE regular changes, which indicates that their magmas come from the same source and their digenetic mechanism is fractional crystallization. In three gold deposits, the mineral ores and related altered rocks have similar chondrite-normalized REE patterns and sharp Eu positive anomalous values. The REE contents reduced from the magmatic rocks to skamization or alteration magmatic rocks, skam type ores, sulphide type ores, wall-rocks limestone or marble. The REE geochemical characteristics of the ores and related rocks show that primary fluids originated from magmatic differentiation in lower pressure of shallow crust, ore-forming hydrothermal solutions gained REE and mineralization elements further from leaching the magmatic rocks, then superimposed and reformed the limestones or marbles and deposited ore-forming material. 展开更多
关键词 REE geochemistry magmatic rocks gold deposits Shizishan ore-field TONGLING rare earths
下载PDF
Geochemical Features of Trace and Rare Earth Elements of Pumice in Middle Okinawa Trough and Its Indication of Magmatic Process 被引量:2
13
作者 ZHAI Shikui GUO Kun +4 位作者 ZONG Tong YU Zenghui WANG Shujie CAI Zongwei ZHANG Xia 《Journal of Ocean University of China》 SCIE CAS CSCD 2017年第2期233-242,共10页
Pumice,the most widely distributed volcanic rock in Okinawa Trough,is loose and porous.Since its formation,it has definitely suffered from the denudation of the sea to different degrees.In order to truly reveal the ge... Pumice,the most widely distributed volcanic rock in Okinawa Trough,is loose and porous.Since its formation,it has definitely suffered from the denudation of the sea to different degrees.In order to truly reveal the geochemical features of pumice,we choose the method of mineral separation.Firstly,the phenocryst is separated from glass.Then the phenocryst is divided into light and heavy mineral compositions.By ICP-MS(inductively coupled plasma mass spectrometry) analytical technology,the contents of trace and rare earth elements in the whole pumice,the glass and the heavy and light mineral compositions are determined respectively.By researching the elemental geochemical features,the magma dynamic processes are found.It shows that the initial magma for the pumice in Okinawa Trough came from the depleted mantle,from which the N-MORB(normal type of mid-ocean ridge basalt) is formed,homologous with the local basalts.But they are formed in different periods of magma crystal fractionation.Featured with sufficient crystal fractionation for pumice,it is found that the earlier crystallizing minerals are olivine,plagioclase and pyroxene.The pumice magma,formed from the depleted mantle,was mixed with additional subduction-related materials(components),and contaminated with the mass from upper crust when it rose up into the crust.As the Okinawa Trough is a back-arc basin in its early back-arc spreading stage,its magmatism has a series of its own unique characteristics,different from not only the mid-ocean ridge expansion,but also the mature back-arc basin. 展开更多
关键词 OKINAWA TROUGH PUMICE TRACE and rare earth elements magmatic process
下载PDF
Isotope Geochronologic and Geochemical Constraints on the Magmatic Associations of the Collisional Orogenic Zone in the West Kunlun Orogen, China 被引量:3
14
作者 WANG Chan LIU Hao +4 位作者 DENG Jianghong LIU Xianfan ZHAO Fufeng WANG Chun TIAN Xin 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第2期482-498,共17页
The Jiajiwaxi pluton in the southern portion of the West Kunlun Range can be divided into two collision-related intrusive rock series, i.e., a gabbro-quartz diorite-granodiorite series that formed at 224±2.0 Ma a... The Jiajiwaxi pluton in the southern portion of the West Kunlun Range can be divided into two collision-related intrusive rock series, i.e., a gabbro-quartz diorite-granodiorite series that formed at 224±2.0 Ma and a monzonitic granite-syenogranite series that formed at 222±2.0 Ma. The systematic analysis of zircon U-Pb geochronology and bulk geochemistry is used to discuss the magmatic origin (material source and thermal source), tectonic setting, genesis and geotectonic implications of these rocks. The results of this analysis indicate that the parent magma of the first series, representing a transition from I-type to S-type granites, formed from thermally triggered partial melting of deep crustal components in an early island-arc-type igneous complex, similar to an I-type granite, during the continental collision orogenic stage. The parent magma of the second series, corresponding to an S-type granite, formed from the partial melting of forearc accretionary wedge sediments in a subduction zone in the late Palaeozoic-Triassic. During continued collision, the second series magma was emplaced into the first series pluton along a central fault zone in the original island arc region, forming an immiscible puncture-type complex. The deep tectonothermal events associated with the continent-continent collision during the orogenic cycle are constrained by the compositions and origins of the two series. The new information provided by this paper will aid in future research into the dynamic mechanisms affecting magmatic evolution in the West Kunlun orogenic belt. 展开更多
关键词 LITHOGEOCHEMISTRY isotope geochronology magmatic association collisional orogeny West Kunlun orogen
下载PDF
A PETROLOGICAL OVERVIEW OF THE KOHISTAN MAGMATIC ARC, NW HIMALAYA, N. PAKISTAN 被引量:2
15
作者 M. Qasim Jan, M. Asif Khan(National Centre of Excellence in Geology, University of Peshawar, Pakistan) 《地学前缘》 EI CAS CSCD 2000年第S1期5-6,共2页
The Kohistan Terrane in N. Pakistan occupies the suture zone between the collided Indian and Asian plates [1] . It formed primarily as an intra\|oceanic island\|arc crust between 125 and 90Ma prior to its accretion wi... The Kohistan Terrane in N. Pakistan occupies the suture zone between the collided Indian and Asian plates [1] . It formed primarily as an intra\|oceanic island\|arc crust between 125 and 90Ma prior to its accretion with the Asian plate along the Shyok suture. The final obduction of Kohistan onto the Indian plate in Early Eocene ensued the principal phase of the Himalayan orogeny.A two\|fold subdivision of the rocks forming the Kohistan crust is now well established [2] . Much of the ultramafic\|mafic component of the arc crust developed in the intraoceanic setting prior to collision with Asia. Mafic\|ultramafic plutonic complexes (Jijal and Sapat), together with gabbroic\|basaltic amphibolites (Kamila belt), at the base of the arc crust, and basaltic\|boninitic volcanics (the Chalt Formation) and Jaglot\|Yasin metasediments, in the upper arc crust are representative lithologies of this tectonic setting. Post Shyok suture lithologies include ca.80~45Ma Kohistan Batholith, Early Eocene Utror\|Shamaran volcanics and sedimentary rocks deposited in Early Eocene Dir and Drosh basins in Andean\|type setting. The Chilas gabbronorite\|ultramafic complex was magmatically emplaced in the waning stages of the intraoceanic phase but preceded the onset of the Andean\|type magmatism. 展开更多
关键词 magmatic ARC KOHISTAN HIMALAYA N.Pakistan
下载PDF
Constraints on early Paleozoic magmatic processes and tectonic setting of Inexpressible Island, Northern Victoria Land, Antarctica 被引量:2
16
作者 CHEN Hong WANG Wei ZHAO Yue 《Advances in Polar Science》 CSCD 2019年第1期52-69,共18页
During the Cambrian and Ordovician, widespread magmatic activity occurred in the Ross Orogen of central Antarctica, forming the Granite Harbor Intrusives and Terra Nova Intrusive Complex. In the Terra Nova Intrusive C... During the Cambrian and Ordovician, widespread magmatic activity occurred in the Ross Orogen of central Antarctica, forming the Granite Harbor Intrusives and Terra Nova Intrusive Complex. In the Terra Nova Intrusive Complex, the latest magmatic activity comprised the emplacement of the Abbott Unit(508 Ma) and the Vegetation Unit(~475 Ma), which were formed in different tectonic settings. Owing to their similar lithological features, the tectonic transformation that occurred between the formation of these two units has not been well studied. Through a detailed geological field investigation and geochemical and geochronological analyses, four types of magmatic rock—basalt, syenite, mafic veins, and granite veins—were identified on Inexpressible Island, Northern Victoria Land. Our SHRIMP(Sensitive High Resolution Ion Micro Probe) zircon U–Pb ages of the basalt and the granite veins are 504.7 ± 3.1 and 495.5 ± 4.9 Ma, respectively. Major-and trace-element data indicate a continental-margin island-arc setting for the formation of these two rock types. The zircon U–Pb ages of the syenite and the monzodiorite veins are 485.8 ± 5.7 and 478.5 ± 4.0 Ma, respectively. Major-and trace-element compositions suggest a collisional setting for the former and an intracontinental extensional setting for the latter. These results elucidate the evolution from subduction to collision and intracontinental extension in Northern Victoria Land during the 20 Ma spanning the late Cambrian–Early Ordovician and improve our understanding of the tectonics and evolution of the Ross Orogen in the Transantarctic Mountains. 展开更多
关键词 Northern VICTORIA Land Ross OROGEN Early PALEOZOIC magmatISM ISLAND-ARC intracontinental extension
下载PDF
Three Stages of Zircon Growth in Magmatic Rocks from the Pingtan Complex,Eastern China 被引量:2
17
作者 WANG Xiang W. L. GRIFFIN +1 位作者 S. Y. O'REILLY LI Wuxian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第1期68-80,共13页
Morphological and chemical studies on zircon grains from gabbro and granite of the Pingtan magmatic complex, Fujian Province, eastern China, show that there are three stages of zircon growth. The early stage of zircon... Morphological and chemical studies on zircon grains from gabbro and granite of the Pingtan magmatic complex, Fujian Province, eastern China, show that there are three stages of zircon growth. The early stage of zircon growth is characterized by colorlessness, high transparence and birefringence, low and dispersive Ipr and Ipy, weak and homogeneous BSE brightness, lower Hf content and depletion of U, Th and Y; the middle stage is characterized by abruptly increasing lpy, progressively strong and sectoral-zoning BSE brightness, higher Hf content and enrichment of U, Th and Y with Th/U 〉 1; the late stage of growth is characterized by brownish color, poor transparence, low birefringence, highest Ipr and Ipy, middle and oscillatorily-zoning BSE brightness, highest contents of Hf, U and Y with Th/U 〈 1. The stages are considered to be formed in a deep magma chamber, ascent passage and emplacement site, respectively. Due to the more or less long residual time of the magma chamber, the difference in age between the early and late stages of zircon might be great enough to be distinguished, which can be attributed to tectonic constraint for the magnlatism. 展开更多
关键词 ZIRCON three stages of crystal growth TYPOLOGY trace element magmatic rock
下载PDF
Geochemistry and Petrogenesis of Volcanic Rocks in the Yeba Formation on the Gangdise Magmatic Arc, Tibet 被引量:3
18
作者 Geng Quanru Pan Guitang +2 位作者 Jin Zhenmin Wang Liquan Liao Zhongli 《Journal of China University of Geosciences》 SCIE CSCD 2005年第4期283-296,共14页
The Early Jurassic bimodal volcanic rocks in the Yeba Formation, situated between Lhasa, Dagze and Maizhokunggar, composed of metabasalt, basaltic ignimbrite, dacite, silicic tuff and volcanic breccia, are an importan... The Early Jurassic bimodal volcanic rocks in the Yeba Formation, situated between Lhasa, Dagze and Maizhokunggar, composed of metabasalt, basaltic ignimbrite, dacite, silicic tuff and volcanic breccia, are an important volcanic suite for the study of the tectonic evolution of the Gangdise magmatic arc and the Mesozoic Tethys. Based on systematic field investigations, we carried out geochemical studies on representative rock samples. Major and trace element compositions were analyzed for these rock samples by XRF and ICP-MS respectively, and an isotope analysis of Rb-Sr and Sm-Nd was carried out by a MAT 262 mass spectrograph. The results show that the SiO2 contents in lava rocks are 41 %-50.4% and 64 % -69 %, belonging to calc-alkaline basalt and dacite. One notable feature of the basalt is its low TiO2 content, 0.66%-1.01%, much lower than those of continental tholeiite. The ∑REE contents of basalt and dacite are 60.3-135 μg/g and 126, 4--167.9μg/ g respectively. Both rocks have similar REE and other trace element characteristics, with enriched LREE and LILE relative to HREE and HFS, similar REE patterns without Eu anomaly. The basalts have depleted Ti, Ta and Nb and slightly negative Nb and Ta anomalies, with Nb = 0.54--1.17 averaging 0. 84. The dacites have depleted P and Ti and also slightly negative Nb and Ta anomalies, with Nb= 0. 74 -1. 06 averaging 0. 86. Major and trace elemental and isotopic studies suggest that both basalt and dacite originated from the partial melting of the mantle wedge at different degrees above the subduction zone. The spinal Iherzolite in the upper mantle is likely to be their source rocks, which might have been affected by the selective metasomatism of fluids with crustal geochemistry. The LILE contents of both rocks were affected by metamorphism at later stages. The Yeba bimodal volcanic rocks formed in a temporal extensional situation in a mature island arc resulting from the Indosinian Gangdise magmatic arc. 展开更多
关键词 bimodal volcanic rock GEOCHEMISTRY PETROGENESIS Gangdise magmatic arc late Indosinian to early Yanshannian.
下载PDF
Tectonomagmatic Metallogenic System of Dexing Ore Field, Jiangxi, China 被引量:1
19
作者 Ye Song Ye Delong Test Center of Minerals and Rocks, China University of Geosciences, Wuhan 430074 Mo Xuanxue Department of Geology and Mineral Resources, China University of Geosciences, Beijing 100083 Ye Nan Northeastern Geolo 《Journal of Earth Science》 SCIE CAS CSCD 1999年第1期76-79,共4页
ore deposits and a large number of ore occurrences cluster in Dexing ore field which is 20 km long and 12 km wide. The tectonic evolution, magmatism, as well as the metallogeny are controlled by the Northeast Jiangxi... ore deposits and a large number of ore occurrences cluster in Dexing ore field which is 20 km long and 12 km wide. The tectonic evolution, magmatism, as well as the metallogeny are controlled by the Northeast Jiangxi deep seated fracture belt (NJDFB). The source is believed to have been derived from the Meso-Neoproterozoic marine volcanism. The magmatic activity of Mesozoic I type granite could have provided the metal elements, thermal fluid, heat, and the space for ore forming processes. A unified geological model is proposed, which combines the tectonism, magmatism and metallogeny as the basic control of the giant metal mineralizations. 展开更多
关键词 TECTONISM magmatISM MINERALIZATION ore field Dexing.
下载PDF
Geological Characteristics and Metallogenic Setting of Representative Magmatic Cu-Ni Deposits in the Tianshan-Xingmeng Orogenic Belt, Central Asia 被引量:1
20
作者 HAN Chunming XIAO Wenjiao +7 位作者 SU Benxun ZHANG Xiaohui WAN Bo SONG Dongfang ZHANG Zhiyong ZHANG Jien WANG Zhongmei XIE Mingcai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第5期1205-1218,共14页
A great number of magmatic Cu-Ni deposits(including Kalatongke in Xinjiang and Hongqiling in Jilin) are distributed over a distance of almost 3000 km across the Tianshan-Xingmeng Orogenic Belt, from Tianshan Mountains... A great number of magmatic Cu-Ni deposits(including Kalatongke in Xinjiang and Hongqiling in Jilin) are distributed over a distance of almost 3000 km across the Tianshan-Xingmeng Orogenic Belt, from Tianshan Mountains in Xinjiang in the west, to Jilin in eastern China in the east. These deposits were formed during a range of magmatic episodes from the Devonian to the Triassic. Significant magmatic Cu-Ni-Co-PGE deposits were formed from the Devonian period in the Nalati arc(e.g. Jingbulake Cu-Ni in Xinjiang), Carboniferous period in the Puerjin-Ertai arc(e.g. Kalatongke Cu-Ni-Co-PGE in Xinjiang), Carboniferous period in the Dananhu-Touquan arc(e.g. Huangshandong, Xiangshan and Tulaergen in estern Tianshan, Xinjiang) to Triassic period in the Hulan arc(e.g. Hongqiling Cu-Ni in Jilin). In addition to the overall tectonic, geologic and distribution of magmatic Cu-Ni deposits in the Tianshan-Xingmeng Orogenic Belt, the metallogenic setting, deposit geology and mineralization characteristics of each deposit mentioned above are summarized in this paper. Geochronologic data of Cu-Ni deposits indicate that, from west to east, the metallogenic ages in the Tianshan-Xingmeng Orogenic Belt changed with time, namely, from the Late Caledonian(~440 Ma), through the Late Hercynian(300-265 Ma) to the Late Indosinian(225-200 Ma). Such variation could reflect a gradual scissor type closure of the paleo Asian ocean between the Siberia Craton and the North China Craton from west to east. 展开更多
关键词 Geochronology magmatic Cu-Ni-Co-PGE deposits Tianshan-Xingmeng Orogenic Belt Central Asia
下载PDF
上一页 1 2 167 下一页 到第
使用帮助 返回顶部