A photonuclear reaction transport model based on an isospin-dependent quantum molecular dynamics model (IQMD) is presented in the intermediate energy region, which is named as GiQMD in this study. Methodology to sim...A photonuclear reaction transport model based on an isospin-dependent quantum molecular dynamics model (IQMD) is presented in the intermediate energy region, which is named as GiQMD in this study. Methodology to simulate the course of the photonuclear reaction within the IQMD frame is described to study the photo- absorption cross section and π meson production, and the simulation results are compared with some available experimental data as well as the Giessen Boltzmann-Uehling-Uhlenbeck model.展开更多
Using the isospin-dependent quantum molecular dynamics model, the entropy of an intermediate-energy heavy ion collision system after the reaction and the number of deuteronlike and protonlike particles produced in the...Using the isospin-dependent quantum molecular dynamics model, the entropy of an intermediate-energy heavy ion collision system after the reaction and the number of deuteronlike and protonlike particles produced in the collision is calculated. In the collision, different parameters are used and the mass number used here is from40 to 93 at incident energy from 150 MeV to 1050 MeV. We build a new model in which the density distribution of the reaction product is used to calculate the size of the entropy. The entropy calculated with this model is in good agreement with experimental values. Our data reveals that with the increase of the neutron-proton ratio and impact parameter, the entropy of the reaction system decreases, and it increases with the increase of system mass and reaction energy.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11421505 and 11220101005the National Basic Research Program of China under Grant No 2014CB845401the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB16
文摘A photonuclear reaction transport model based on an isospin-dependent quantum molecular dynamics model (IQMD) is presented in the intermediate energy region, which is named as GiQMD in this study. Methodology to simulate the course of the photonuclear reaction within the IQMD frame is described to study the photo- absorption cross section and π meson production, and the simulation results are compared with some available experimental data as well as the Giessen Boltzmann-Uehling-Uhlenbeck model.
文摘Using the isospin-dependent quantum molecular dynamics model, the entropy of an intermediate-energy heavy ion collision system after the reaction and the number of deuteronlike and protonlike particles produced in the collision is calculated. In the collision, different parameters are used and the mass number used here is from40 to 93 at incident energy from 150 MeV to 1050 MeV. We build a new model in which the density distribution of the reaction product is used to calculate the size of the entropy. The entropy calculated with this model is in good agreement with experimental values. Our data reveals that with the increase of the neutron-proton ratio and impact parameter, the entropy of the reaction system decreases, and it increases with the increase of system mass and reaction energy.