期刊文献+
共找到1,634篇文章
< 1 2 82 >
每页显示 20 50 100
Interface engineering of an electrospun nanofiber-based composite cathode for intermediate-temperature solid oxide fuel cells
1
作者 Seo Ju Kim Deokyoon Woo +3 位作者 Donguk Kim Tae Kyeong Lee Jaeyeob Lee Wonyoung Lee 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期345-353,共9页
Sluggish oxygen reduction reaction(ORR)kinetics are a major obstacle to developing intermediate-temperature solid-oxide fuel cells(IT-SOFCs).In particular,engineering the anion defect concentration at an interface bet... Sluggish oxygen reduction reaction(ORR)kinetics are a major obstacle to developing intermediate-temperature solid-oxide fuel cells(IT-SOFCs).In particular,engineering the anion defect concentration at an interface between the cathode and electrolyte is important for facilitating ORR kinetics and hence improving the electrochemical performance.We developed the yttria-stabilized zirconia(YSZ)nanofiber(NF)-based composite cathode,where the oxygen vacancy concentration is controlled by varying the dopant cation(Y2O3)ratio in the YSZ NFs.The composite cathode with the optimized oxygen vacancy concentration exhibits maximum power densities of 2.66 and 1.51 W cm^(−2)at 700 and 600℃,respectively,with excellent thermal stability at 700℃ over 500 h under 1.0 A cm^(−2).Electrochemical impedance spectroscopy and distribution of relaxation time analysis revealed that the high oxygen vacancy concentration in the NF-based scaffold facilitates the charge transfer and incorporation reaction occurred at the interfaces between the cathode and electrolyte.Our results demonstrate the high feasibility and potential of interface engineering for achieving IT-SOFCs with higher performance and stability. 展开更多
关键词 solid oxide fuel cells NANOFIBER INFILTRATION oxygen reduction reactions oxygen vacancy
下载PDF
Composite Cathode Bi_(1.14)Sr_(0.43)O_(2.14)-Ag for Intermediate-temperature Solid Oxide Fuel Cells
2
作者 高展 张萍 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第3期350-353,共4页
Composites consisting of strontium stabilized bismuth oxide (Bi1.14Sr0.43O2.14, SSB) and silver were investigated as cathodes for intermediate-temperature solid oxide fuel cells with doped ceria electrolyte. There w... Composites consisting of strontium stabilized bismuth oxide (Bi1.14Sr0.43O2.14, SSB) and silver were investigated as cathodes for intermediate-temperature solid oxide fuel cells with doped ceria electrolyte. There were no chemical reactions between the two components. The microstructure of the interfaces between composite cathodes and Ce0.8Sm0.2O1.9 (SDC) electrolytes was examined by scanning electron microscopy (SEM). Impedance spectroscopy measurements show that the performance of cathode fired at 700 ℃ is the best. When the content of Ag2O is 70 wt%, polarization resistance values for the SSB-Ag cathodes are as low as 0.2 Ωcm^2 at 700℃ and 0.29 Ωcm^2 at 650℃. These results are much smaller than some of other reported composite cathodes on doped ceria electrolyte and indicate that SSB-Ag composite is a potential cathode material for intermediate temperature SOFCs. 展开更多
关键词 solid oxide fuel cells (SOFCs) composite cathode strontium stabilized bismuth oxide (SSB) samaria doped ceria (SDC)
下载PDF
Recent progresses in the development of tubular segmented-in-series solid oxide fuel cells:Experimental and numerical study
3
作者 Shuo Han Tao Wei +6 位作者 Sijia Wang Yanlong Zhu Xingtong Guo Liang He Xiongzhuang Li Qing Huang Daifen Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期427-442,共16页
Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s... Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field. 展开更多
关键词 solid oxide fuel cell SEGMENTED-IN-SERIES TUBULAR experimental study numerical study
下载PDF
Lattice Boltzmann simulation study of anode degradation in solid oxide fuel cells during the initial aging process
4
作者 Shixue Liu Zhijing Liu +1 位作者 Shuxing Zhang Hao Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期405-411,共7页
For present solid oxide fuel cells(SOFCs),rapid performance degradation is observed in the initial aging process,and the dis-cussion of the degradation mechanism necessitates quantitative analysis.Herein,focused ion b... For present solid oxide fuel cells(SOFCs),rapid performance degradation is observed in the initial aging process,and the dis-cussion of the degradation mechanism necessitates quantitative analysis.Herein,focused ion beam-scanning electron microscopy was em-ployed to characterize and reconstruct the ceramic microstructures of SOFC anodes.The lattice Boltzmann method(LBM)simulation of multiphysical and electrochemical processes in the reconstructed models was performed.Two samples collected from industrial-size cells were characterized,including a reduced reference cell and a cell with an initial aging process.Statistical parameters of the reconstructed microstructures revealed a significant decrease in the active triple-phase boundary and Ni connectivity in the aged cell compared with the reference cell.The LBM simulation revealed that activity degradation is dominant compared with microstructural degradation during the initial aging process,and the electrochemical reactions spread to the support layer in the aged cell.The microstructural and activity de-gradations are attributed to Ni migration and coarsening. 展开更多
关键词 solid oxide fuel cell anode degradation focused ion beam-scanning electron microscopy lattice Boltzmann method
下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃
5
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 Low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
Effects of operating conditions on the performance degradation and anode microstructure evolution of anode-supported solid oxide fuel cells 被引量:2
6
作者 Xin Yang Zhihong Du +5 位作者 Qian Zhang Zewei Lyu Shixue Liu Zhijing Liu Minfang Han Hailei Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1181-1189,共9页
Performance degradation shortens the life of solid oxide fuel cells in practical applications.Revealing the degradation mechanism is crucial for the continuous improvement of cell durability.In this work,the effects o... Performance degradation shortens the life of solid oxide fuel cells in practical applications.Revealing the degradation mechanism is crucial for the continuous improvement of cell durability.In this work,the effects of cell operating conditions on the terminal voltage and anode microstructure of a Ni-yttria-stabilized zirconia anode-supported single cell were investigated.The microstructure of the anode active area near the electrolyte was characterized by laser optical microscopy and focused ion beam-scanning electron microscopy.Ni depletion at the anode/electrolyte interface region was observed after 100 h discharge tests.In addition,the long-term stability of the single cell was evaluated at 700℃for 3000 h.After an initial decline,the anode-supported single cell exhibits good durability with a voltage decay rate of 0.72%/kh and an electrode polarization resistance decay rate of 0.17%/kh.The main performance loss of the cell originates from the initial degradation. 展开更多
关键词 solid oxide fuel cell Ni-YSZ anode focused ion beam Ni migration electrochemical performance
下载PDF
Fabrication of Gd_(2)O_(3)-doped CeO_(2)thin films through DC reactive sputtering and their application in solid oxide fuel cells 被引量:2
7
作者 Fuyuan Liang Jiaran Yang +1 位作者 Haiqing Wang Junwei Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1190-1197,共8页
Physical vapor deposition(PVD)can be used to produce high-quality Gd_(2)O_(3)-doped CeO2(GDC)films.Among various PVD methods,reactive sputtering provides unique benefits,such as high deposition rates and easy upscalin... Physical vapor deposition(PVD)can be used to produce high-quality Gd_(2)O_(3)-doped CeO2(GDC)films.Among various PVD methods,reactive sputtering provides unique benefits,such as high deposition rates and easy upscaling for industrial applications.GDC thin films were successfully fabricated through reactive sputtering using a Gd_(0.2)Ce_(0.8)(at%)metallic target,and their application in solid oxide fuel cells,such as buffer layers between yttria-stabilized zirconia(YSZ)/La0.6Sr0.4Co0.2Fe0.8O_(3−δ)and as sublayers in the steel/coating system,was evaluated.First,the direct current(DC)reactive-sputtering behavior of the GdCe metallic target was determined.Then,the GDC films were deposited on NiO-YSZ/YSZ half-cells to investigate the influence of oxygen flow rate on the quality of annealed GDC films.The results demonstrated that reactive sputtering can be used to prepare thin and dense GDC buffer layers without high-temperature sintering.Furthermore,the cells with a sputtered GDC buffer layer showed better electrochemical performance than those with a screen-printed GDC buffer layer.In addition,the insertion of a GDC sublayer between the SUS441 interconnects and the Mn-Co spinel coatings contributed to the reduction of the oxidation rate for SUS441 at operating temperatures,according to the area-specific resistance tests. 展开更多
关键词 solid oxide fuel cell physical vapor deposition Gd2O3-doped CeO_(2) metallic interconnects electrical conductivity
下载PDF
Recent advances and influencing parameters in developing electrode materials for symmetrical solid oxide fuel cells 被引量:1
8
作者 Wan Nor Anasuhah Wan Yusoff Nurul Akidah Baharuddin +3 位作者 Mahendra Rao Somalu Andanastuti Muchtar Nigel P.Brandon Huiqing Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1933-1956,共24页
This article delivers a robust overview of potential electrode materials for use in symmetrical solid oxide fuel cells(S-SOFCs),a relatively new SOFC technology.To this end,this article provides a comprehensive review... This article delivers a robust overview of potential electrode materials for use in symmetrical solid oxide fuel cells(S-SOFCs),a relatively new SOFC technology.To this end,this article provides a comprehensive review of recent advances and progress in electrode materials for S-SOFC,discussing both the selection of materials and the challenges that come with making that choice.This article discussed the relevant factors involved in developing electrodes with nano/microstructure.Nanocomposites,e.g.,non-cobalt and lithiated materials,are only a few of the electrode types now being researched.Furthermore,the phase structure and microstructure of the produced materials are heavily influenced by the synthesis procedure.Insights into the possibilities and difficulties of the material are discussed.To achieve the desired microstructural features,this article focuses on a synthesis technique that is either the most recent or a better iteration of an existing process.The portion of this analysis that addresses the risks associated with manufacturing and the challenges posed by materials when fabricating S-SOFCs is the most critical.This article also provides important and useful recommendations for the strategic design of electrode materials researchers. 展开更多
关键词 nano composites ELECTRODE microstructure tailoring oxidATION symmetrical solid oxide fuel cell
下载PDF
Layered perovskite oxide Y_(0.8)Ca_(0.2)BaCoFeO_(5+δ) as a novel cathode material for intermediate-temperature solid oxide fuel cells 被引量:3
9
作者 余良浩 陈永红 +4 位作者 顾庆文 田冬 卢肖永 孟广耀 林彬 《Journal of Rare Earths》 SCIE EI CAS CSCD 2015年第5期519-523,共5页
A layered perovskite oxide Y0.8Ca0.2BaCoFeO5+δ(YCBCF) was synthesized as a novel cathode material for intermedi-ate-temperature solid oxide fuel cells (IT-SOFCs) by citric acid-nitrates self-propagating combusti... A layered perovskite oxide Y0.8Ca0.2BaCoFeO5+δ(YCBCF) was synthesized as a novel cathode material for intermedi-ate-temperature solid oxide fuel cells (IT-SOFCs) by citric acid-nitrates self-propagating combustion method. The phase and micro-structure of YCBCF were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The aver-age thermal expansion coefficient (TEC) of YCBCF was 14.6×10–6 K–1, which was close to other materials of SOFC at the range of RT–1000 oC. An open-circuit potential of 0.75 V and a maximum output power density of 426 mW/cm2 were obtained at 650 oC in a Sm0.2Ce0.8O1.9 (SDC)-based anode-supported SOFC by using humidified (~3%H2O) hydrogen as fuel and static air as oxidant. The results indicated that the YCBCF was a promising cathode candidate for IT-SOFCs. 展开更多
关键词 solid oxide fuel cell CATHODE PEROVSKITE Sm0.2Ce0.8O1.9 rare earths
原文传递
Low molecular weight alkane-fed solid oxide fuel cells for power and chemicals cogeneration
10
作者 Ermete Antolini 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期711-735,I0015,共26页
This paper presents a review of low molecular weight alkane-fed solid oxide fuel cells(SOFCs),which,unlikely the conventional use of SOFCs for only power production,are utilized to cogenerate produce useful chemicals ... This paper presents a review of low molecular weight alkane-fed solid oxide fuel cells(SOFCs),which,unlikely the conventional use of SOFCs for only power production,are utilized to cogenerate produce useful chemicals at the same time.The cogeneration processes in SOFC have been classified according to the different types of fuel.C_(2)and C_(3)alkenes and synthesis gas are the main cogenerated chemicals together with electricity.The chemicals and energy cogeneration in a fuel cell reactor seems to be an effective alternative to conventional reactors for only chemicals production and conventional fuel cells for only power production.Although,the use of SOFCs for chemicals and energy cogeneration has proved successful in the industrial setting,the development of new catalysts aimed at obtaining the desired chemicals together with the production of a high amount of energy,and optimizing SOFC operation conditions is still a challenge to enhance system performance and make commercial applications workable. 展开更多
关键词 solid oxide fuel cells ALKANE ALKENE SYNGAS COGENERATION
下载PDF
Enhanced electrochemical performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3−δ)cathode via Ba-doping for intermediate-temperature solid oxide fuel cells 被引量:2
11
作者 Changkun Cai Manyi Xie +5 位作者 Ke Xue Yu Shi Shuting Li Yuanyuan Liu Shengli An Hong Yang 《Nano Research》 SCIE EI CSCD 2022年第4期3264-3272,共9页
La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF)is recognized as one of the most promising cathode materials for the highly-desired intermediatetemperature solid oxide fuel cell(IT-SOFC)technology.However,it is still ch... La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF)is recognized as one of the most promising cathode materials for the highly-desired intermediatetemperature solid oxide fuel cell(IT-SOFC)technology.However,it is still challenged by polarization losses due to reduced operation temperatures.In this work,a series of Ba^(2+)-doped La0.6-xBaxSr0.4Co0.2Fe0.8O3-δ(LBSCFx,x=0.05,0.10,0.15,and 0.20)materials are successfully synthesized and their electrochemical performances are evaluated as a cathode for IT-SOFC technology.The study shows that,compared to the un-doped LSCF,the Ba^(2+)-doped LBSCF possess higher electrical conductivities at 500-800℃ and display lower polarization resistances to oxygen adsorption/dissociation.As a result,the Ni-SDC|SDC|LBSCF0.20 cell(SDC=samarium-doped cerium,Sm_(0.2)Ce_(0.8)O_(1.9))delivers a high maximum power density of 0.704 W/cm^(2)at 750℃,which is>30%higher than the Ni-SDC|SDC|LSCF cell.This work reveals that Ba^(2+)-doping is effective in enhancing oxygen catalytic activity of LSCF-based cathode materials,demonstrating a new and commercial-feasible strategy in developing high performance cathode materials for the IT-SOFC technology. 展开更多
关键词 solid oxide fuel cell(SOFC) intermediate-temperature perovskite oxide Ba-doping La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3−δ)(LSCF)
原文传递
Cathode infiltration with enhanced catalytic activity and durability for intermediate-temperature solid oxide fuel cells 被引量:1
12
作者 Yinghua Niu Weirong Huo +3 位作者 Yuandong Yu Wenjun Li Yulin Chen Weiqiang Lv 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第2期674-682,共9页
To lower the operation temperature and increase the durability of solid oxide fuel cells(SOFCs), increasing attentions have been paid on developing cathode materials with good oxygen reduction reaction(ORR)activity at... To lower the operation temperature and increase the durability of solid oxide fuel cells(SOFCs), increasing attentions have been paid on developing cathode materials with good oxygen reduction reaction(ORR)activity at intermediate-temperature(IT, 500-750 ℃) range. However, most cathode materials exhibit poor catalytic activity, or they thermally mismatch with SOFC electrolytes and undergo severe degeneration. Infiltrating catalysts on existing backbone materials has been proved to be an efficient method to construct highly active and durable cathodes. In this mini-review, the advantages of infiltration-based cathode compared with new material-based cathodes are summarized. The merits and drawbacks of different backbones are illustrated. Different types of catalysts for infiltration are depicted in detail. Suggestions on the material/structure optimization of the infiltrated cathodes of IT-SOFC are provided. 展开更多
关键词 INFILTRATION CATHODE solid oxide fuel cell Oxygen oxidation reaction DURABILITY
原文传递
Preparation and Electrochemical Performance of Cobalt-free Cathode Material Ba0.5Sr0.5Fe0.9Nb0.1O3-δ for Intermediate-temperature Solid Oxide Fuel Cells
13
作者 LONG Wen XU Huawei HE Tianmin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2014年第5期806-810,共5页
Perovskite oxide Ba0.5Sr0.5Fe0.9Nb0.1O3-δ(BSFN) as a cobalt-free cathode for intermediate-temperature solid oxide fuel cells(IT-SOFCs) on the Ce0.5Sm0.2O1.9(SDC) and La0.9Sr0.1Ga0.8Mg0.23O3-δ(LSGM) electroly... Perovskite oxide Ba0.5Sr0.5Fe0.9Nb0.1O3-δ(BSFN) as a cobalt-free cathode for intermediate-temperature solid oxide fuel cells(IT-SOFCs) on the Ce0.5Sm0.2O1.9(SDC) and La0.9Sr0.1Ga0.8Mg0.23O3-δ(LSGM) electrolytes was prepared and investigated. The single phase BSFN oxide with a cubic perovskite structure and relatively high elec- trical conductivities was obtained after sintering at 1250℃ for 10 h in air. The BSFN cathode exhibited excellent chemical stability on the SDC and LSGM electrolytes at temperatures below 950 ℃. The area specific resistance of the BSFN cathode on the SDC and LSGM electrolytes were 0.024 and 0.021 Ω·cm2 at 800℃, respectively. The maximum power densities of the single cell with BSFN cathode in 300 μm-thick SDC and LSGM electrolytes achieved 414 and 516 mW/cm2 at 800℃, respectively. These results show that the BSFN material is a promising co- bait-free cathode candidate to be used in IT-SOFCs. A combination of the BSFN cathode and LSGM electrolyte is preferred owing to its excellent electrochemical performance. 展开更多
关键词 solid oxide fuel cell CATHODE Phase formation Chemical stability Electrochemical performance
原文传递
Pervoskite-type Bao.sSro.sAl0.1Fe0.9O3-δ as Intermediate-Temperature Solid Oxide Fuel Cell Cathode 被引量:1
14
作者 Yun Gan Kui Xie 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第5期605-608,I0004,共5页
关键词 中温固体氧化物燃料电池 钙钛矿型 阴极 离子传导性 正温度系数 最大输出功率 温度依赖性 负温度系数
下载PDF
Temperature Gradient Analyses of a Tubular Solid Oxide Fuel Cell Fueled by Methanol
15
作者 Qidong Xu Meiting Guo +5 位作者 Lingchao Xia Zheng Li Qijiao He Dongqi Zhao Keqing Zheng Meng Ni 《Transactions of Tianjin University》 EI CAS 2023年第1期14-30,共17页
Thermal management in solid oxide fuel cells(SOFC)is a critical issue due to non-uniform electrochemical reactions and convective fl ows within the cells.Therefore,a 2D mathematical model is established herein to inve... Thermal management in solid oxide fuel cells(SOFC)is a critical issue due to non-uniform electrochemical reactions and convective fl ows within the cells.Therefore,a 2D mathematical model is established herein to investigate the thermal responses of a tubular methanol-fueled SOFC.Results show that unlike the low-temperature condition of 873 K,where the peak temperature gradient occurs at the cell center,it appears near the fuel inlet at 1073 K because of the rapid temperature rise induced by the elevated current density.Despite the large heat convection capacity,excessive air could not eff ectively eliminate the harmful temperature gradient caused by the large current density.Thus,optimal control of the current density by properly selecting the operating potential could generate a local thermal neutral state.Interestingly,the maximum axial temperature gradient could be reduced by about 18%at 973 K and 20%at 1073 K when the air with a 5 K higher temperature is supplied.Additionally,despite the higher electrochemical performance observed,the cell with a counter-fl ow arrange-ment featured by a larger hot area and higher maximum temperature gradients is not preferable for a ceramic SOFC system considering thermal durability.Overall,this study could provide insightful thermal information for the operating condition selection,structure design,and stability assessment of realistic SOFCs combined with their internal reforming process. 展开更多
关键词 solid oxide fuel cell MODELING Methanol fuel Temperature gradient Internal reforming
下载PDF
Progress and challenges of carbon-fueled solid oxide fuel cells anode 被引量:8
16
作者 Minjian Ma Xiaoxia Yang +3 位作者 Jinshuo Qiao Wang Sun Zhenhua Wang Kening Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期209-222,共14页
Carbon-fueled solid oxide fuel cells(CF-SOFCs)can electrochemically convert the chemical energy in carbon into electricity,which demonstrate both superior electrical efficiency and fuel utilisation compared to all oth... Carbon-fueled solid oxide fuel cells(CF-SOFCs)can electrochemically convert the chemical energy in carbon into electricity,which demonstrate both superior electrical efficiency and fuel utilisation compared to all other types of fuel cells.However,using solid carbon as the fuel of SOFCs also faces some challenges,the fluid mobility and reactive activity of carbon-based fuels are much lower than those of gaseous fuels.Therefore,the anode reaction kinetics plays a crucial role in determining the electrochemical performance of CF-SOFCs.Herein,the progress of various anodes in CF-SOFCs is reviewed from the perspective of material compositions,electrochemical performance and microstructures.Challenges faced in developing high performance anodes for CF-SOFCs are also discussed. 展开更多
关键词 CARBON Anodes solid oxide fuel cells Energy conversion Reaction processes
下载PDF
Solid oxide fuel cells in combination with biomass gasification for electric power generation 被引量:6
17
作者 Huangang Shi Qianjun Li +2 位作者 Wenyi Tan Hao Qiu Chao Su 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第4期1156-1161,共6页
Biomass,a source of renewable energy,represents an effective substitute to fossil fuels.Gasification is a process that organics are thermochemically converted into valuable gaseous products(e.g.biogas).In this work,th... Biomass,a source of renewable energy,represents an effective substitute to fossil fuels.Gasification is a process that organics are thermochemically converted into valuable gaseous products(e.g.biogas).In this work,the catalytic test demonstrated that the biogas produced from biomass gasification mainly consists of H2,CH4,CO,and CO2,which were then be used as the fuel for solid oxide fuel cell(SOFC).Planar SOFCs were fabricated and adopted.The steam reforming of biogas was carried out at the anode of a SOFC to obtain a hydrogen-rich fuel.The performance of the SOFCs operating on generated biogas was investigated by I-V polarization and electrochemical impedance spectra characterizations.An excellent cell performance was obtained,for example,the peak power density of the SOFC reached 1391 mW·cm-2 at 750℃when the generated biogas was used as the fuel.Furthermore,the SOFC fuelled by simulated biogas delivered a very stable operation. 展开更多
关键词 Biomass gasification BIOGAS solid oxide fuel cell Steam reforming
下载PDF
Sealing Glass of Barium-Calcium-Aluminosilicate System for Solid Oxide Fuel Cells 被引量:2
18
作者 朴金花 孙克宁 +2 位作者 张乃庆 陈新冰 周德瑞 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第4期434-438,共5页
Glass-ceramic materials were developed as a sealant in the solid oxide fuel cell (SOFC) in the temperature range of 800 -850 ℃. The glass materials were based on the glass and glass-ceramic in the BaO-CaO-Al2O3-SiO... Glass-ceramic materials were developed as a sealant in the solid oxide fuel cell (SOFC) in the temperature range of 800 -850 ℃. The glass materials were based on the glass and glass-ceramic in the BaO-CaO-Al2O3-SiO2-La2O3-B2O3 system. The thermal expansion coefficient (TEC) decreased with lower Ba^2+ content and higher Ca^2+ content, but the glass transition temperature and crystallization temperature increased greatly with an increase in Ca^2+ content and a decrease in Ba^2+ content, when the other components in the sealant were invariable. The TEC of the sealant with Ba^2+ content of 25.4% was 10.8 × 10^-6 K^- 1(temperature range from 25 to 850℃), and its softening temperature was 950 ℃. The TEC of the sealant accorded well with that of La0.9Sr0.1Ga0.5Mg0.2o3- 6(LSGM) with a mismatch of only 3%. The sealant had superior stability and compatibility with the LSGM electrolyte during the process of operation in SOFC. The weight loss of the sealant with Ba^2+ content of 25.4% was approfimately zero after heat-treated at 800℃ for 500 h in H2 and O2 atmosphere, respectively. 展开更多
关键词 solid oxide fuel cell GLASS-CERAMIC SEALANT compatibility rare earths
下载PDF
The Effect of Fabrication Conditions for GDC Buffer Layer on Electrochemical Performance of Solid Oxide Fuel Cells 被引量:2
19
作者 Jung-Hoon Song Myung Geun Jung +1 位作者 Hye Won Park Hyung-Tae Lim 《Nano-Micro Letters》 SCIE EI CAS 2013年第3期151-158,共8页
A Gd-doped ceria(GDC) buffer layer is required between a conventional yttria-stabilized zirconia(YSZ) electrolyte and a La-Sr-Co-Fe-O3(LSCF) cathode to prevent their chemical reaction. In this study,the effect o... A Gd-doped ceria(GDC) buffer layer is required between a conventional yttria-stabilized zirconia(YSZ) electrolyte and a La-Sr-Co-Fe-O3(LSCF) cathode to prevent their chemical reaction. In this study,the effect of varying the conditions for fabricating the GDC buffer layer, such as sintering temperature and amount of sintering aid, on the solid oxide fuel cell(SOFC) performance was investigated. A finer GDC powder(i.e., ultra-high surface area), a higher sintering temperature(1290℃), and a larger amount of sintering aid(12%) resulted in improved densification of the buffer layer; however, the electrochemical performance of an anode-supported cell containing this GDC buffer layer was poor. These conflicting results are attributed to the formation of(Zr, Ce)O2 and/or excess cobalt grain boundaries(GBs) at higher sintering temperatures with a large amount of sintering aid(i.e., cobalt oxide). A cell comprising of a cobalt-free GDC buffer layer, which was fabricated using a low-temperature process, had lower cell resistance and higher stability. The results indicate that electrochemical performance and stability of SOFCs strongly depend on fabrication conditions for the GDC buffer layer. 展开更多
关键词 solid oxide fuel cell(SOFC) Gd-doped ceria Sintering aid Sol-gel spin coating
下载PDF
Electrochemical performance and stability of Sr-doped LaMnO_(3)-infiltrated yttria stabilized zirconia oxygen electrode for reversible solid oxide fuel cells 被引量:2
20
作者 Hui Fan Minfang Han 《International Journal of Coal Science & Technology》 EI CAS 2014年第1期56-61,共6页
Porous Sr-doped lanthanum manganite–yttria stabilized zirconia(LSM–YSZ)oxygen electrode is prepared by an infiltration process for a reversible solid oxide fuel cell(RSOFC).X-ray diffraction and SEM analysis display... Porous Sr-doped lanthanum manganite–yttria stabilized zirconia(LSM–YSZ)oxygen electrode is prepared by an infiltration process for a reversible solid oxide fuel cell(RSOFC).X-ray diffraction and SEM analysis display that perovskite phase LSM submicro particles are evenly distributed in the porous YSZ matrix.Polarization curves and electrochemical impedance spectra are conducted for the RSOFC at 800 and 850C under both SOFC and SOEC modes.At 850℃,the single cell has the maximum power density of~726 mW/cm^(2)under SOFC mode,and electrolysis voltage of 1.35 V at 1 A/cm^(2)under SOEC mode.Fuel cell/water electrolysis cycle shows the cell has good performance stability during 6 cycles,which exhibits the LSM–YSZ oxygen electrode has high electrochemical performance and good stability.The results suggest that netw ork-like LSM–YSZ electrode made by infiltration process could be a promising oxygen electrode for high temperature RSOFCs. 展开更多
关键词 Reversible solid oxide fuel cell solid oxide electrolysis cell INFILTRATION Strontium-doped lanthanum manganite
下载PDF
上一页 1 2 82 下一页 到第
使用帮助 返回顶部