Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM)...Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM),metal ingot producers and even die casters.The aim of this study was to minimize the intermetallic formation in Mg sludge via the optimization of the chemistry and process parameters.The Al8Mn5 intermetallic particles were identified by the microstructure analysis based on the Al and Mn ratio.The design of experiment(DOE)technique,Taguchi method,was employed to minimize the intermetallic formation in the sludge of Mg alloys with various chemical compositions of Al,Mn,Fe,and different process parameters,holding temperature and holding time.The sludge yield(SY)and intermetallic size(IS)was selected as two responses.The optimum combination of the levels in terms of minimizing the intermetallic formation were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,690℃ for the holding temperature and holding at 30 mins for the holding time,respectively.The best combination for smallest intermetallic size were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,630℃ for the holding temperature and holding at 60 mins for the holding time,respectively.Three groups of sludge factors,Chemical Sludge(CSF),Physical Sludge(PSF)and Comprehensive Sludge Factors(and CPSF)were established for prediction of sludge yields and intermetallic sizes in Al-containing Mg alloys.The CPSF with five independent variables including both chemical elements and process parameters gave high accuracy in prediction,as the prediction of the PSF with only the two processing parameters of the melt holding temperature and time showed a relatively large deviation from the experimental data.The Chemical Sludge Factor was primarily designed for small ingot producers and die casters with a limited melting and holding capacity,of which process parameters could be fixed easily.The Physical Sludge Factor could be used for mass production with a single type of Mg alloy,in which the chemistry fluctuation might be negligible.In large Mg casting suppliers with multiple melting and holding furnaces and a number of Mg alloys in production,the Comprehensive Sludge Factor should be implemented to diminish the sludge formation.展开更多
We describe a novel mechanism for the synthesis of a stable high-entropy alloy powder from an otherwise immiscible Mg-Ti rich metallic mixture by employing high-energy mechanical milling.The presented methodology expe...We describe a novel mechanism for the synthesis of a stable high-entropy alloy powder from an otherwise immiscible Mg-Ti rich metallic mixture by employing high-energy mechanical milling.The presented methodology expedites the synthesis of amorphous alloy powder by strategically injecting entropic disorder through the inclusion of multi-principal elements in the alloy composition.Predictions from first principles and materials theory corroborate the results from microscopic characterizations that reveal a transition of the amorphous phase from a precursor intermetallic structure.This transformation,characterized by the emergence of antisite disorder,lattice expansion,and the presence of nanograin boundaries,signifies a departure from the precursor intermetallic structure.Additionally,this phase transformation is accelerated by the presence of multiple principal elements that induce severe lattice distortion and a higher configurational entropy.The atomic size mismatch of the dissimilar elements present in the alloy produces a stable amorphous phase that resists reverting to an ordered lattice even on annealing.展开更多
Porous intermetallics show potential in the field of filtration and separation as well as in the field of catalysis.Herein,porous Ti Fe2intermetallics were fabricated by the reactive synthesis of elemental powders.The...Porous intermetallics show potential in the field of filtration and separation as well as in the field of catalysis.Herein,porous Ti Fe2intermetallics were fabricated by the reactive synthesis of elemental powders.The phase transformation and pore formation of porous TiFe2intermetallics were investigated,and its corrosion behavior and hydrogen evolution reaction(HER)performance in alkali solution were studied.Porous TiFe2intermetallics with porosity in the range of 34.4%-56.4%were synthesized by the diffusion reaction of Ti and Fe elements,and the pore formation of porous TiFe2intermetallic compound is the result of a combination of the bridging effect and the Kirkendall effect.The porous TiFe2samples exhibit better corrosion resistance compared with porous 316L stainless steel,which is related to the formation of uniform nanosheets on the surface that hinder further corrosion,and porous TiFe2electrode shows the overpotential of 220.6 and 295.6 mV at 10 and 100 mA·cm-2,suggesting a good catalytic performance.The synthesized porous Fe-based intermetallic has a controllable pore structure as well as excellent corrosion resistance,showing its potential in the field of filtration and separation.展开更多
The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction...The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts.展开更多
In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ...In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ80 Mg alloy were investigated.Citric acid(CA)was used to activate the alloy surface during the pretreatment process.The alloy was first pretreated with CA and then subjected to a hydrothermal process using ultrapure water to produce Mg-Al-LDH/Mg(OH)_(2)steam coating.The effect of different time of acid pretreatment on the activation of the intermetallic compounds was investigated.The microstructure and elemental composition of the obtained coatings were analyzed using FE-SEM,EDS,XRD and FT-IR.The corrosion resistance of the coated samples was evaluated using different techniques,i.e.,potentiodynamic polarization(PDP),electrochemical impedance spectrum(EIS)and hydrogen evolution test.The results indicated that the CA pretreatment significantly influenced the activity of the alloy surface by exposing the intermetallic compounds.The surface area fraction of Mg_(17)Al_(12)and Al_(8)Mn_(5)phases on the surface of the alloy was significantly higher after the CA pretreatment,and thus promoted the growth of the subsequent Mg-Al-LDH coatings.The CA pretreatment for 30 s resulted in a denser and thicker LDH coating.Increase in the CA pretreatment time significantly led to the improvement in corrosion resistance of the coated AZ80 alloy.The corrosion current density of the coated alloy was lower by three orders of magnitude as compared to the uncoated alloy.展开更多
Friction stir welding of dissimilar Al/Mg thick plates still faces severe challenges, such as poor formability, formation of thick intermetallic compounds, and low joint strength. In this work, two joint configuration...Friction stir welding of dissimilar Al/Mg thick plates still faces severe challenges, such as poor formability, formation of thick intermetallic compounds, and low joint strength. In this work, two joint configurations, namely inclined butt(conventional butt) and serrated interlocking(innovative butt), are proposed for improving weld formation and joint quality. The results show that a continuous and straight intermetallic compound layer appears at the Mg side interface in conventional butt joint, and the maximum average thickness reaches about 60.1 μm.Additionally, the Mg side interface also partially melts, forming a eutectic structure composed of Mg solid solution and Al_(12)Mg_(17) phase.For the innovative butt joint, the Mg side interface presents the curved interlocking feature, and intermetallic compounds can be reduced to less than 10 μm. The joint strength of innovative butt joint is more than three times that of conventional butt joint. This is due to the interlocking effect and thin intermetallic compounds in the innovative joint.展开更多
In the present work,we have employed machine learning(ML)techniques to evaluate ductile-brittle(DB)behaviors in intermetallic compounds(IMCs)which can form magnesium(Mg)alloys.This procedure was mainly conducted by a ...In the present work,we have employed machine learning(ML)techniques to evaluate ductile-brittle(DB)behaviors in intermetallic compounds(IMCs)which can form magnesium(Mg)alloys.This procedure was mainly conducted by a proxy-based method,where the ratio of shear(G)/bulk(B)moduli was used as a proxy to identify whether the compound is ductile or brittle.Starting from compounds information(composition and crystal structure)and their moduli,as found in open databases(AFLOW),ML-based models were built,and those models were used to predict the moduli in other compounds,and accordingly,to foresee the ductile-brittle behaviors of these new compounds.The results reached in the present work showed that the built models can effectively catch the elastic moduli of new compounds.This was confirmed through moduli calculations done by density functional theory(DFT)on some compounds,where the DFT calculations were consistent with the ML prediction.A further confirmation on the reliability of the built ML models was considered through relating between the DB behavior in MgBe_(13) and MgPd_(2),as evaluated by the ML-predicted moduli,and the nature of chemical bonding in these two compounds,which in turn,was investigated by the charge density distribution(CDD)and electron localization function(ELF)obtained by DFT methodology.The ML-evaluated DB behaviors of the two compounds was also consistent with the DFT calculations of CDD and ELF.These findings and confirmations gave legitimacy to the built model to be employed in further prediction processes.Indeed,as examples,the DB characteristics were investigated in IMCs that might from in three Mg alloy series,involving AZ,ZX and WE.展开更多
Instantaneous reactions of Al,Mn,Zn,Zr and Y with Ni by mixing the prepared Mg-8Al-0.4Mn,Mg-6Zn-2Y-0.5Zr and Mg-0.6Ni melts were investigated in this work to reveal the underlying mechanisms of their effects on the re...Instantaneous reactions of Al,Mn,Zn,Zr and Y with Ni by mixing the prepared Mg-8Al-0.4Mn,Mg-6Zn-2Y-0.5Zr and Mg-0.6Ni melts were investigated in this work to reveal the underlying mechanisms of their effects on the removal of Ni impurity.The results indicate three Ni-containing intermetallics,namely Al_(4)NiY,Al_(4)Ni(Y,Zr)and Al_(31)Ni_(2)Mn_(6).The former two phases present lath-like and have a relatively larger size(>20μm in length)than the latest one which is granular with the diameter of∼120 nm.This illustrates that Al and Y(/Zr)can efficiently remove Ni by forming Al_(4)NiY or Al_(4)Ni(Y,Zr)which would precipitate to the bottom of the melt.Furthermore,adding Y into Mg-Al based alloys can simultaneously remove Fe and Ni,which contributes their excellent corrosion resistance.Finally,this paper proposes two methods helped to efficiently remove Ni for both Mg-Al based alloys and Al-free Mg alloys,and both of them are also benefit to improve alloys’strength.展开更多
Highly active and robust electrocatalysts are desired for proton exchange membrane fuel cells.Pt-based intermetallic compounds(IMCs) have been recognized as one of the most promising low-platinum catalysts for fuel ce...Highly active and robust electrocatalysts are desired for proton exchange membrane fuel cells.Pt-based intermetallic compounds(IMCs) have been recognized as one of the most promising low-platinum catalysts for fuel cells(FCs).Herein,we report a high-performance IMCs by anchoring ordered PtCoNi ternary nanoparticles on the N,Co and Ni co-doped dodecahedral mesoporous carbon(DMC).While the introduced Co and Ni participate in the formation of PtCoNi IMCs,some of them are doped in the mesoporous carbon and coordinated by N to form Co-N_(y)/Ni-N_(z)dual active centers,which further enhances the electrocatalytic activity towards oxygen reduction reaction.Moreover,the addition of Ni results in a negative shift of the d-band center of Pt as compared to the Pt/DMC and Pt_(3)Co/DMC,making it easier to adsorb oxygen on the surface.As expected,our optimal sample Pt_(3)Co_(0.7)Ni_(0.3)/DMC exhibits excellent performance with mass activity and specific activity of 1.32 A mgPt-1and 1.98 mA cm^(-2)at 0.9 V,which are 7.33and 6.19 times that of commercial Pt/C,respectively.The Pt_(3)Co_(0.7)Ni_(0.3)/DMC also reveals much better cathodic performance in an H2-air single fuel cell than commercial Pt/C catalyst with a power density of0.802 W cm^(-2).This work provides critical sights into constructing efficient catalysts by ternary intermetallic strategy and synergetic effect between active components and support.展开更多
Pt-based catalysts are the typical industrial catalysts for propane dehydrogenation(PDH),which still suffer from insufficient lo ng-term durability due to the structu ral instability and coke deposition.A commercial ...Pt-based catalysts are the typical industrial catalysts for propane dehydrogenation(PDH),which still suffer from insufficient lo ng-term durability due to the structu ral instability and coke deposition.A commercial γ-Al_(2)O_(3) supported thermally robust sub-nanometer Pt2In3intermetallic catalyst with atomically ordered structure and rigorously separated Pt single atoms was fabricated,which showed outstanding robustness in 240 h long-term operation at 600℃ with the deactivation rate constant kdas low as0.00078 h^(-1), ranking among the lowest reported values.Based on various in situ characterizations and theoretical calculations,it was proved that the catalyst stability not only resulted from the separated Pt single-atom sites but also significantly affected by the distance of adjacent Pt atoms.An increasing distance to 3.25 A in the Pt_(2)In_(3)could induce a weak π-adsorption configuration of propylene on Pt sites,which facilitated the desorption of propylene and restrained the side reactions like coking.展开更多
This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initi...This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initially, porous Ti structures are produced using the LMD process, followed by immersion in a molten Mg-3Al(wt%) metal. Due to the higher thermodynamic miscibility of Al with Ti compared to Mg, the concentration of Al in the Ti matrix increases as the immersion time increases. This results in a sequential phase transition within the Ti matrix: α-Ti → Ti_(3)Al → Ti Al. The phase transition considerably affects the hardness and strength of the composite material,with the Mg-Ti_(3)Al-Ti Al composite exhibiting a maximum hardness nearly twice as high as that of the conventional Mg-Ti composite. This innovative process holds potential for the development of various bicontinuous metal-intermetallic composites.展开更多
A micromechanical model is presented to study the initiation and propagation of microcracks of intermetallic compounds(IMCs)in solder joints.The effects of the grain aggregate morphology,the grain boundary defects and...A micromechanical model is presented to study the initiation and propagation of microcracks of intermetallic compounds(IMCs)in solder joints.The effects of the grain aggregate morphology,the grain boundary defects and the sensitivity of the various cohesive zone parameters in predicting the overall mechanical response are investigated.The overall strength is predominantly determined by the weak grain interfaces;both the grain aggregate morphology and the weak grain interfaces control the crack configuration;the different normal and tangential strengths of grain interfaces result in different intergranular cracking behaviors and play a critical role in determining the macroscopic mechanical response of the system.展开更多
Enhancing the stability of Pt-based electrocatalysts for the sluggish cathodic oxygen reduction reaction(ORR)is critical for proton exchange membrane fuel cells(PEMFCs).Herein,high-entropy intermetallic(HEI)L1_(2)-Pt(...Enhancing the stability of Pt-based electrocatalysts for the sluggish cathodic oxygen reduction reaction(ORR)is critical for proton exchange membrane fuel cells(PEMFCs).Herein,high-entropy intermetallic(HEI)L1_(2)-Pt(FeCoNiCuZn)3is designed for durable ORR catalysis.Benefiting from the unique HEI structure and the enhanced intermetallic phase stability,Pt(FeCoNiCuZn)3/C nanoparticles demonstrate significantly improved stability over Pt/C and PtCu_(3)/C catalysts.The Pt(FeCoNiCuZn)3/C exhibits a negligible decay of the half-wave potential during 30,000 potential cycles from 0.6 to 1.0 V,whereas Pt/C and PtCu_(3)/C are negatively shifted by 46 and 36 m V,respectively.Even after 10,000 cycles at potential up to 1.5 V,the mass activity of Pt(FeCoNiCuZn)3/C still shows~70%retention.As evidenced by the structural characterizations,the HEI structure of Pt(FeCoNiCuZn)3/C is well maintained,while PtCu_(3)/C nanoparticles undergo severe Cu leaching and particle growth.In addition,when assembled Pt(FeCoNiCuZn)3/C as the cathode in high-temperature PEMFC of 160℃,the H_(2)-O_(2)fuel cell delivers almost no degradation even after operating for 150 h,demonstrating the potential for fuel cell applications.This work provides a facile design strategy for the development of high-performance ultrastable electrocatalysts.展开更多
The present work continues a series of publications devoted to the study of the sorption properties of reactive alloys based on IIA metals and the development of advanced getter materials for gas and vacuum technologi...The present work continues a series of publications devoted to the study of the sorption properties of reactive alloys based on IIA metals and the development of advanced getter materials for gas and vacuum technologies. This publication attempts to answer the current challenges in the field of gas sorption associated with the emergence of new vacuum products such as vacuum insulated glasses, electronic systems, cryogenic devices, etc. An analysis of the problems that arise here, as well as the results of sorption measurements, carried out with the participation of intermetallic phases of the composition CaLi<sub>2</sub> and Ca<sub>0.33</sub>Li<sub>0.48</sub>Mg<sub>0.19</sub>, show that the best getter support for these new hermetically sealed products can be provided by intermetallic compounds formed in systems Li-IIA metals. Intermetallic phases of this family are easy to manufacture and demonstrate outstanding service characteristics: their specific sorption capacity is recorded high, exceeding traditional gas sorbents in this respect by at least an order of magnitude;the kinetics of gas capturing is set at the stage of alloy production, i.e., is adjustable;the temporary resistance of these phases to atmospheric gases allows to install the getter at its workplace in air, without further thermal activation. The sorption superiority of reactive intermetallics is explained by their special sorption mechanism: the gas/metal interaction is formed here as a combination of two processes, continuous growth of reaction products on a metallic surface and corrosion decay of brittle intermetallic phase under mechanical forces, which feeds the chemical reaction with a fresh surface. The advantages of sorption processes of this new type are undoubted and significant: compared with the conventional sorbents, an intermetallic getter reactant solves two important problems;it reduces production costs and increases the sorption yield.展开更多
The effect of Si on the growth kinetics of intermetallic compounds during the reaction of solid iron and molten aluminum was investigated with a scanning electron microscope coupled with an energy dispersive X-ray spe...The effect of Si on the growth kinetics of intermetallic compounds during the reaction of solid iron and molten aluminum was investigated with a scanning electron microscope coupled with an energy dispersive X-ray spectroscope, and hot-dip aluminized experiments. The results show that the intermetallic layer is composed of major Fe2Al5 and minor FeAl3. The Al-Fe-Si ternary phase, rl/rg, is formed in the Fe2Al5 layer. The tongue-like morphology of the Fe2Als layer becomes less distinct and disappears finally as the content of Si in aluminum bath increases. Si in the bath improves the prohibiting ability to the growth of Fe2Als and FeAl3. When the contents of Si are 0, 0.5%, 1.0%, 1.5%, 2.0% and 3.0%, the activation energies of Fe2Al5 are evaluated to be 207, 186, 169, 168, 167 and 172 kJ/mol, respectively. The reduction of the activation energy might result from the lattice distortion caused by Si atom penetrating into the Fe2Al5 phase. When Si atom occupies the vacancy site, it blocks easy diffusion path and results in the disappearance of tongue-like morphology.展开更多
A wear resistant TiB-TiC reinforced TiNi-Ti2Ni intermetallic matrix composite coating(TiB-TiC/TiNi-Ti2Ni) was prepared on Ti-6.5Al-2Zr-1Mo-1V titanium alloy by the laser cladding process using Ti+Ni+B4C powder ble...A wear resistant TiB-TiC reinforced TiNi-Ti2Ni intermetallic matrix composite coating(TiB-TiC/TiNi-Ti2Ni) was prepared on Ti-6.5Al-2Zr-1Mo-1V titanium alloy by the laser cladding process using Ti+Ni+B4C powder blends as the precursor materials.Microstructure and worn surface morphologies of the coating were characterized by optical microscopy(OM),scan electron microscopy(SEM),X-ray diffraction(XRD),energy dispersive X-ray analysis(EDS) and atomic force microscopy(AFM).Wear resistance of the coating was evaluated under dry sliding wear test condition at room temperature.The results indicate that the laser clad coating has a unique microstructure composed of flower-like TiB-TiC eutectic ceramics uniformly distributed in the TiNi-Ti2Ni dual-phase intermetallic matrix.The coating exhibits an excellent wear resistance because of combined action of hard TiB-TiC eutectic ceramic reinforcements and ductile TiNi-Ti2Ni dual-phase intermetallic matrix.展开更多
Intermetallic phase evolution of 5059 aluminum alloy during homogenization was investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy...Intermetallic phase evolution of 5059 aluminum alloy during homogenization was investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS), differential scanning calorimetry (DSC) and X-ray diffraction analysis (XRD). The results show that severe dendritic segregation exists in as-cast alloy. The dissolvable intermetallic phases in as-cast alloy consist of Zn-and Cu-rich non-equilibriumβ(Al3Mg2) phase, Fe-rich eutectic Al6Mn phase and equilibrium Mg2Si phase. During the homogenization, Zn- and Cu-rich non-equilibrium β (Al3Mg2) phase, Fe-rich eutectic Al6Mn phase and equilibrium Mg2Si gradually dissolve into matrix. Fine dispersed β(Al3Mg2) particles and rod-shaped Al6Mn particles form in the Al matrix after homogenization. The proper homogenization processing is at 450 °C for 24 h, which is consistent with the results of homogenizing kinetic analysis.展开更多
The Fe-containing intermetallic compounds with high melting point in hypereutectic Al-Si alloys can improve the heat resistance and wear resistance at elevated temperatures. However, the long needle-like Fe-containing...The Fe-containing intermetallic compounds with high melting point in hypereutectic Al-Si alloys can improve the heat resistance and wear resistance at elevated temperatures. However, the long needle-like Fe-containing compounds in the alloys produced by conventional casting process are detrimental to the strength of matrix. The effect of ultrasonic vibration (USV) on the morphology change of Fe-containing intermetallic compounds in the hypereutectic Al-17Si-xFe (x=2, 3, 4, 5) alloys was systematically studied. The results show that, the Fe-containing intermetallic compounds are mainly composed of long needle-like β-Al5FeSi phase with a small amount of plate-like δ-Al4FeSi2 phase in Al-17Si-2Fe alloy produced by conventional casting process. With the increase of Fe content from 2% to 5% in the alloys, the amount of plate-like or coarse needle-like δ-Al4FeSi2 phase increases while the amount of long needle-like β-Al5FeSi phases decreases. In Al-17Si-5Fe alloy, the Fe-containing intermetallic compounds exist mainly as coarse needle-like δ-Al4FeSi2 phase. After USV treatment, the Fe-containing compounds in the Al-17Si-xFe alloys are refined and exist mainly as δ-Al4FeSi2 particles, with average grain size ranging from 26 μm to 37 μm, and only a small amount of β-Al5FeSi phases remain. The mechanism of USV on the morphology of Fe-containing intermetallic compounds was also discussed.展开更多
The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that t...The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that the interface between the solid Fe and Al formed by heat-treatment consisted of Fe2Al5 and FeAl3 intermetallic compound layers, which deteriorated the interfacial bonding strength. Fractures occurred in the intermetallic compound layer during the shear testing. The location of the fracture depended on the defects of microcracks or voids in the intermetallic compound layers. The microcracks in the intermetallic compound layer were caused by the mismatch of thermal expansion coefficients of materials during cooling, and the voids were consistent with the Kirkendall effect. The work will lay an important foundation for welding and joining of aluminum and steel, especially for fabrication of Al-Fe clad materials.展开更多
Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering condit...Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering conditions were evaluated by various techniques.The results reveal that when the sintering temperature is above the melting point of aluminum,the self-propagating high-temperature synthesis reaction occurs between Ti and Al,and forms various phases of Ti-based solid solutions including α-Ti Ti3Al,TiAl,TiAl2 and α-Ti including TiAl3,etc.When the sintering time increased,Ti-based solid solution,TiAl2 and TiAl3 disappeared gradually,and the sheet containing Ti3Al and TiAl phases in a multilayered structure formed finally.A lot of voids were also observed in the sintered structures,which were caused by the melting Al,Kirkendall effect and the difference of molar volumes between reactants and products.The voids were eliminated and a dense sample was obtained by the following hot press.展开更多
基金Meridian Lightweight Technologies Inc.,Strathroy,Ontario Canadathe University of Windsor,Windsor,Ontario,Canada for supporting this workpart of a large project funded by Meridian Lightweight Technologies,Inc.
文摘Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM),metal ingot producers and even die casters.The aim of this study was to minimize the intermetallic formation in Mg sludge via the optimization of the chemistry and process parameters.The Al8Mn5 intermetallic particles were identified by the microstructure analysis based on the Al and Mn ratio.The design of experiment(DOE)technique,Taguchi method,was employed to minimize the intermetallic formation in the sludge of Mg alloys with various chemical compositions of Al,Mn,Fe,and different process parameters,holding temperature and holding time.The sludge yield(SY)and intermetallic size(IS)was selected as two responses.The optimum combination of the levels in terms of minimizing the intermetallic formation were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,690℃ for the holding temperature and holding at 30 mins for the holding time,respectively.The best combination for smallest intermetallic size were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,630℃ for the holding temperature and holding at 60 mins for the holding time,respectively.Three groups of sludge factors,Chemical Sludge(CSF),Physical Sludge(PSF)and Comprehensive Sludge Factors(and CPSF)were established for prediction of sludge yields and intermetallic sizes in Al-containing Mg alloys.The CPSF with five independent variables including both chemical elements and process parameters gave high accuracy in prediction,as the prediction of the PSF with only the two processing parameters of the melt holding temperature and time showed a relatively large deviation from the experimental data.The Chemical Sludge Factor was primarily designed for small ingot producers and die casters with a limited melting and holding capacity,of which process parameters could be fixed easily.The Physical Sludge Factor could be used for mass production with a single type of Mg alloy,in which the chemistry fluctuation might be negligible.In large Mg casting suppliers with multiple melting and holding furnaces and a number of Mg alloys in production,the Comprehensive Sludge Factor should be implemented to diminish the sludge formation.
基金supported in part by the National Science Foundation(NSF)award#CMMI-1944040。
文摘We describe a novel mechanism for the synthesis of a stable high-entropy alloy powder from an otherwise immiscible Mg-Ti rich metallic mixture by employing high-energy mechanical milling.The presented methodology expedites the synthesis of amorphous alloy powder by strategically injecting entropic disorder through the inclusion of multi-principal elements in the alloy composition.Predictions from first principles and materials theory corroborate the results from microscopic characterizations that reveal a transition of the amorphous phase from a precursor intermetallic structure.This transformation,characterized by the emergence of antisite disorder,lattice expansion,and the presence of nanograin boundaries,signifies a departure from the precursor intermetallic structure.Additionally,this phase transformation is accelerated by the presence of multiple principal elements that induce severe lattice distortion and a higher configurational entropy.The atomic size mismatch of the dissimilar elements present in the alloy produces a stable amorphous phase that resists reverting to an ordered lattice even on annealing.
基金financially supported by the National Natural Science Foundation of China(No.51971251)。
文摘Porous intermetallics show potential in the field of filtration and separation as well as in the field of catalysis.Herein,porous Ti Fe2intermetallics were fabricated by the reactive synthesis of elemental powders.The phase transformation and pore formation of porous TiFe2intermetallics were investigated,and its corrosion behavior and hydrogen evolution reaction(HER)performance in alkali solution were studied.Porous TiFe2intermetallics with porosity in the range of 34.4%-56.4%were synthesized by the diffusion reaction of Ti and Fe elements,and the pore formation of porous TiFe2intermetallic compound is the result of a combination of the bridging effect and the Kirkendall effect.The porous TiFe2samples exhibit better corrosion resistance compared with porous 316L stainless steel,which is related to the formation of uniform nanosheets on the surface that hinder further corrosion,and porous TiFe2electrode shows the overpotential of 220.6 and 295.6 mV at 10 and 100 mA·cm-2,suggesting a good catalytic performance.The synthesized porous Fe-based intermetallic has a controllable pore structure as well as excellent corrosion resistance,showing its potential in the field of filtration and separation.
基金supported by the National Key Research and Development Program of China(2021YFB4001301)the Science and Technology Commission of Shanghai Municipality(21DZ1208600)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2021ZD105)。
文摘The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51601108 and 52071191)the Natural Science Foundation of Shandong Province(ZR2020ME011).
文摘In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ80 Mg alloy were investigated.Citric acid(CA)was used to activate the alloy surface during the pretreatment process.The alloy was first pretreated with CA and then subjected to a hydrothermal process using ultrapure water to produce Mg-Al-LDH/Mg(OH)_(2)steam coating.The effect of different time of acid pretreatment on the activation of the intermetallic compounds was investigated.The microstructure and elemental composition of the obtained coatings were analyzed using FE-SEM,EDS,XRD and FT-IR.The corrosion resistance of the coated samples was evaluated using different techniques,i.e.,potentiodynamic polarization(PDP),electrochemical impedance spectrum(EIS)and hydrogen evolution test.The results indicated that the CA pretreatment significantly influenced the activity of the alloy surface by exposing the intermetallic compounds.The surface area fraction of Mg_(17)Al_(12)and Al_(8)Mn_(5)phases on the surface of the alloy was significantly higher after the CA pretreatment,and thus promoted the growth of the subsequent Mg-Al-LDH coatings.The CA pretreatment for 30 s resulted in a denser and thicker LDH coating.Increase in the CA pretreatment time significantly led to the improvement in corrosion resistance of the coated AZ80 alloy.The corrosion current density of the coated alloy was lower by three orders of magnitude as compared to the uncoated alloy.
基金supported by the National Natural Science Foundation of China (No.51874179,52005240 and 52164045)the Young Talent Program of Major Disciplines of Academic and Technical Leaders in Jiangxi Province (No.20212BCJ23028)。
文摘Friction stir welding of dissimilar Al/Mg thick plates still faces severe challenges, such as poor formability, formation of thick intermetallic compounds, and low joint strength. In this work, two joint configurations, namely inclined butt(conventional butt) and serrated interlocking(innovative butt), are proposed for improving weld formation and joint quality. The results show that a continuous and straight intermetallic compound layer appears at the Mg side interface in conventional butt joint, and the maximum average thickness reaches about 60.1 μm.Additionally, the Mg side interface also partially melts, forming a eutectic structure composed of Mg solid solution and Al_(12)Mg_(17) phase.For the innovative butt joint, the Mg side interface presents the curved interlocking feature, and intermetallic compounds can be reduced to less than 10 μm. The joint strength of innovative butt joint is more than three times that of conventional butt joint. This is due to the interlocking effect and thin intermetallic compounds in the innovative joint.
基金supported by National Research Foundation(NRF)of South Korea(2020R1A2C1004720)。
文摘In the present work,we have employed machine learning(ML)techniques to evaluate ductile-brittle(DB)behaviors in intermetallic compounds(IMCs)which can form magnesium(Mg)alloys.This procedure was mainly conducted by a proxy-based method,where the ratio of shear(G)/bulk(B)moduli was used as a proxy to identify whether the compound is ductile or brittle.Starting from compounds information(composition and crystal structure)and their moduli,as found in open databases(AFLOW),ML-based models were built,and those models were used to predict the moduli in other compounds,and accordingly,to foresee the ductile-brittle behaviors of these new compounds.The results reached in the present work showed that the built models can effectively catch the elastic moduli of new compounds.This was confirmed through moduli calculations done by density functional theory(DFT)on some compounds,where the DFT calculations were consistent with the ML prediction.A further confirmation on the reliability of the built ML models was considered through relating between the DB behavior in MgBe_(13) and MgPd_(2),as evaluated by the ML-predicted moduli,and the nature of chemical bonding in these two compounds,which in turn,was investigated by the charge density distribution(CDD)and electron localization function(ELF)obtained by DFT methodology.The ML-evaluated DB behaviors of the two compounds was also consistent with the DFT calculations of CDD and ELF.These findings and confirmations gave legitimacy to the built model to be employed in further prediction processes.Indeed,as examples,the DB characteristics were investigated in IMCs that might from in three Mg alloy series,involving AZ,ZX and WE.
基金This work was supported by the National Natural Science Foundation of China under grants no.11804030the Scientific and Technological Developing Scheme of Jilin Province under grants no.20200801048GH.
文摘Instantaneous reactions of Al,Mn,Zn,Zr and Y with Ni by mixing the prepared Mg-8Al-0.4Mn,Mg-6Zn-2Y-0.5Zr and Mg-0.6Ni melts were investigated in this work to reveal the underlying mechanisms of their effects on the removal of Ni impurity.The results indicate three Ni-containing intermetallics,namely Al_(4)NiY,Al_(4)Ni(Y,Zr)and Al_(31)Ni_(2)Mn_(6).The former two phases present lath-like and have a relatively larger size(>20μm in length)than the latest one which is granular with the diameter of∼120 nm.This illustrates that Al and Y(/Zr)can efficiently remove Ni by forming Al_(4)NiY or Al_(4)Ni(Y,Zr)which would precipitate to the bottom of the melt.Furthermore,adding Y into Mg-Al based alloys can simultaneously remove Fe and Ni,which contributes their excellent corrosion resistance.Finally,this paper proposes two methods helped to efficiently remove Ni for both Mg-Al based alloys and Al-free Mg alloys,and both of them are also benefit to improve alloys’strength.
基金supported by the National Key Research and Development Program of China(2017YFB0102900 and 2016YFB0101201)the National Natural Science Foundation of China(51971094,21476088 and 21776104)the Guangdong Provincial Department of Science and Technology(2015A030312007)。
文摘Highly active and robust electrocatalysts are desired for proton exchange membrane fuel cells.Pt-based intermetallic compounds(IMCs) have been recognized as one of the most promising low-platinum catalysts for fuel cells(FCs).Herein,we report a high-performance IMCs by anchoring ordered PtCoNi ternary nanoparticles on the N,Co and Ni co-doped dodecahedral mesoporous carbon(DMC).While the introduced Co and Ni participate in the formation of PtCoNi IMCs,some of them are doped in the mesoporous carbon and coordinated by N to form Co-N_(y)/Ni-N_(z)dual active centers,which further enhances the electrocatalytic activity towards oxygen reduction reaction.Moreover,the addition of Ni results in a negative shift of the d-band center of Pt as compared to the Pt/DMC and Pt_(3)Co/DMC,making it easier to adsorb oxygen on the surface.As expected,our optimal sample Pt_(3)Co_(0.7)Ni_(0.3)/DMC exhibits excellent performance with mass activity and specific activity of 1.32 A mgPt-1and 1.98 mA cm^(-2)at 0.9 V,which are 7.33and 6.19 times that of commercial Pt/C,respectively.The Pt_(3)Co_(0.7)Ni_(0.3)/DMC also reveals much better cathodic performance in an H2-air single fuel cell than commercial Pt/C catalyst with a power density of0.802 W cm^(-2).This work provides critical sights into constructing efficient catalysts by ternary intermetallic strategy and synergetic effect between active components and support.
基金financially supported by the DNL Cooperation Fund,CAS (DNL202002)the National Natural Science Foundation of China (22102180)+3 种基金the CAS Project for Young Scientists in Basic Research,(YSBR-022)the Key Research Program of Frontier Sciences,CAS (ZDBS-LY-7012)Liao Ning Revitalization Talents Program (XLYC2007070)the Fundamental Research Funds for the Central Universities (20720220009)。
文摘Pt-based catalysts are the typical industrial catalysts for propane dehydrogenation(PDH),which still suffer from insufficient lo ng-term durability due to the structu ral instability and coke deposition.A commercial γ-Al_(2)O_(3) supported thermally robust sub-nanometer Pt2In3intermetallic catalyst with atomically ordered structure and rigorously separated Pt single atoms was fabricated,which showed outstanding robustness in 240 h long-term operation at 600℃ with the deactivation rate constant kdas low as0.00078 h^(-1), ranking among the lowest reported values.Based on various in situ characterizations and theoretical calculations,it was proved that the catalyst stability not only resulted from the separated Pt single-atom sites but also significantly affected by the distance of adjacent Pt atoms.An increasing distance to 3.25 A in the Pt_(2)In_(3)could induce a weak π-adsorption configuration of propylene on Pt sites,which facilitated the desorption of propylene and restrained the side reactions like coking.
基金supported by the National Research Council of Science & Technology (NST) grant by the Korea Government (MSIT) (grant no.CRC23011-000)by the National Research Foundation of Korea (NRF) funded by the Ministry of Science,ICT,and Future Planning (MSIP,South Korea) (grant no.NRF-2021R1C1C1007645)。
文摘This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initially, porous Ti structures are produced using the LMD process, followed by immersion in a molten Mg-3Al(wt%) metal. Due to the higher thermodynamic miscibility of Al with Ti compared to Mg, the concentration of Al in the Ti matrix increases as the immersion time increases. This results in a sequential phase transition within the Ti matrix: α-Ti → Ti_(3)Al → Ti Al. The phase transition considerably affects the hardness and strength of the composite material,with the Mg-Ti_(3)Al-Ti Al composite exhibiting a maximum hardness nearly twice as high as that of the conventional Mg-Ti composite. This innovative process holds potential for the development of various bicontinuous metal-intermetallic composites.
基金supported by the NationalNatural Science Foundation of China (NSFC) under Grant 11872078,and Beijing Natural Science Foundation No.3222005.
文摘A micromechanical model is presented to study the initiation and propagation of microcracks of intermetallic compounds(IMCs)in solder joints.The effects of the grain aggregate morphology,the grain boundary defects and the sensitivity of the various cohesive zone parameters in predicting the overall mechanical response are investigated.The overall strength is predominantly determined by the weak grain interfaces;both the grain aggregate morphology and the weak grain interfaces control the crack configuration;the different normal and tangential strengths of grain interfaces result in different intergranular cracking behaviors and play a critical role in determining the macroscopic mechanical response of the system.
基金supported by the National Natural Science Foundation(22279036)the Innovation and Talent Recruitment Base of New Energy Chemistry and Device(B21003)。
文摘Enhancing the stability of Pt-based electrocatalysts for the sluggish cathodic oxygen reduction reaction(ORR)is critical for proton exchange membrane fuel cells(PEMFCs).Herein,high-entropy intermetallic(HEI)L1_(2)-Pt(FeCoNiCuZn)3is designed for durable ORR catalysis.Benefiting from the unique HEI structure and the enhanced intermetallic phase stability,Pt(FeCoNiCuZn)3/C nanoparticles demonstrate significantly improved stability over Pt/C and PtCu_(3)/C catalysts.The Pt(FeCoNiCuZn)3/C exhibits a negligible decay of the half-wave potential during 30,000 potential cycles from 0.6 to 1.0 V,whereas Pt/C and PtCu_(3)/C are negatively shifted by 46 and 36 m V,respectively.Even after 10,000 cycles at potential up to 1.5 V,the mass activity of Pt(FeCoNiCuZn)3/C still shows~70%retention.As evidenced by the structural characterizations,the HEI structure of Pt(FeCoNiCuZn)3/C is well maintained,while PtCu_(3)/C nanoparticles undergo severe Cu leaching and particle growth.In addition,when assembled Pt(FeCoNiCuZn)3/C as the cathode in high-temperature PEMFC of 160℃,the H_(2)-O_(2)fuel cell delivers almost no degradation even after operating for 150 h,demonstrating the potential for fuel cell applications.This work provides a facile design strategy for the development of high-performance ultrastable electrocatalysts.
文摘The present work continues a series of publications devoted to the study of the sorption properties of reactive alloys based on IIA metals and the development of advanced getter materials for gas and vacuum technologies. This publication attempts to answer the current challenges in the field of gas sorption associated with the emergence of new vacuum products such as vacuum insulated glasses, electronic systems, cryogenic devices, etc. An analysis of the problems that arise here, as well as the results of sorption measurements, carried out with the participation of intermetallic phases of the composition CaLi<sub>2</sub> and Ca<sub>0.33</sub>Li<sub>0.48</sub>Mg<sub>0.19</sub>, show that the best getter support for these new hermetically sealed products can be provided by intermetallic compounds formed in systems Li-IIA metals. Intermetallic phases of this family are easy to manufacture and demonstrate outstanding service characteristics: their specific sorption capacity is recorded high, exceeding traditional gas sorbents in this respect by at least an order of magnitude;the kinetics of gas capturing is set at the stage of alloy production, i.e., is adjustable;the temporary resistance of these phases to atmospheric gases allows to install the getter at its workplace in air, without further thermal activation. The sorption superiority of reactive intermetallics is explained by their special sorption mechanism: the gas/metal interaction is formed here as a combination of two processes, continuous growth of reaction products on a metallic surface and corrosion decay of brittle intermetallic phase under mechanical forces, which feeds the chemical reaction with a fresh surface. The advantages of sorption processes of this new type are undoubted and significant: compared with the conventional sorbents, an intermetallic getter reactant solves two important problems;it reduces production costs and increases the sorption yield.
基金Project (51071135) supported by the National Natural Science Foundation of ChinaProject (20114301110005) supported by the Ph. D.Programs Foundation of Ministry of Education of ChinaProject (10XZX15) supported by the Science Foundation of Xiangtan University,China
文摘The effect of Si on the growth kinetics of intermetallic compounds during the reaction of solid iron and molten aluminum was investigated with a scanning electron microscope coupled with an energy dispersive X-ray spectroscope, and hot-dip aluminized experiments. The results show that the intermetallic layer is composed of major Fe2Al5 and minor FeAl3. The Al-Fe-Si ternary phase, rl/rg, is formed in the Fe2Al5 layer. The tongue-like morphology of the Fe2Als layer becomes less distinct and disappears finally as the content of Si in aluminum bath increases. Si in the bath improves the prohibiting ability to the growth of Fe2Als and FeAl3. When the contents of Si are 0, 0.5%, 1.0%, 1.5%, 2.0% and 3.0%, the activation energies of Fe2Al5 are evaluated to be 207, 186, 169, 168, 167 and 172 kJ/mol, respectively. The reduction of the activation energy might result from the lattice distortion caused by Si atom penetrating into the Fe2Al5 phase. When Si atom occupies the vacancy site, it blocks easy diffusion path and results in the disappearance of tongue-like morphology.
基金Project (2010CB731705) supported by the National Basic Research Program of China
文摘A wear resistant TiB-TiC reinforced TiNi-Ti2Ni intermetallic matrix composite coating(TiB-TiC/TiNi-Ti2Ni) was prepared on Ti-6.5Al-2Zr-1Mo-1V titanium alloy by the laser cladding process using Ti+Ni+B4C powder blends as the precursor materials.Microstructure and worn surface morphologies of the coating were characterized by optical microscopy(OM),scan electron microscopy(SEM),X-ray diffraction(XRD),energy dispersive X-ray analysis(EDS) and atomic force microscopy(AFM).Wear resistance of the coating was evaluated under dry sliding wear test condition at room temperature.The results indicate that the laser clad coating has a unique microstructure composed of flower-like TiB-TiC eutectic ceramics uniformly distributed in the TiNi-Ti2Ni dual-phase intermetallic matrix.The coating exhibits an excellent wear resistance because of combined action of hard TiB-TiC eutectic ceramic reinforcements and ductile TiNi-Ti2Ni dual-phase intermetallic matrix.
基金Project (2012CB619501) supported by the National Basic Research Program of China
文摘Intermetallic phase evolution of 5059 aluminum alloy during homogenization was investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS), differential scanning calorimetry (DSC) and X-ray diffraction analysis (XRD). The results show that severe dendritic segregation exists in as-cast alloy. The dissolvable intermetallic phases in as-cast alloy consist of Zn-and Cu-rich non-equilibriumβ(Al3Mg2) phase, Fe-rich eutectic Al6Mn phase and equilibrium Mg2Si phase. During the homogenization, Zn- and Cu-rich non-equilibrium β (Al3Mg2) phase, Fe-rich eutectic Al6Mn phase and equilibrium Mg2Si gradually dissolve into matrix. Fine dispersed β(Al3Mg2) particles and rod-shaped Al6Mn particles form in the Al matrix after homogenization. The proper homogenization processing is at 450 °C for 24 h, which is consistent with the results of homogenizing kinetic analysis.
基金Project(2012CB619600)supported by the National Basic Research Program of ChinaProject(50775086)supported by the National Natural Science Foundation of China
文摘The Fe-containing intermetallic compounds with high melting point in hypereutectic Al-Si alloys can improve the heat resistance and wear resistance at elevated temperatures. However, the long needle-like Fe-containing compounds in the alloys produced by conventional casting process are detrimental to the strength of matrix. The effect of ultrasonic vibration (USV) on the morphology change of Fe-containing intermetallic compounds in the hypereutectic Al-17Si-xFe (x=2, 3, 4, 5) alloys was systematically studied. The results show that, the Fe-containing intermetallic compounds are mainly composed of long needle-like β-Al5FeSi phase with a small amount of plate-like δ-Al4FeSi2 phase in Al-17Si-2Fe alloy produced by conventional casting process. With the increase of Fe content from 2% to 5% in the alloys, the amount of plate-like or coarse needle-like δ-Al4FeSi2 phase increases while the amount of long needle-like β-Al5FeSi phases decreases. In Al-17Si-5Fe alloy, the Fe-containing intermetallic compounds exist mainly as coarse needle-like δ-Al4FeSi2 phase. After USV treatment, the Fe-containing compounds in the Al-17Si-xFe alloys are refined and exist mainly as δ-Al4FeSi2 particles, with average grain size ranging from 26 μm to 37 μm, and only a small amount of β-Al5FeSi phases remain. The mechanism of USV on the morphology of Fe-containing intermetallic compounds was also discussed.
基金Project(2011DFR50630)sponsored by the International S&T Cooperation of China
文摘The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that the interface between the solid Fe and Al formed by heat-treatment consisted of Fe2Al5 and FeAl3 intermetallic compound layers, which deteriorated the interfacial bonding strength. Fractures occurred in the intermetallic compound layer during the shear testing. The location of the fracture depended on the defects of microcracks or voids in the intermetallic compound layers. The microcracks in the intermetallic compound layer were caused by the mismatch of thermal expansion coefficients of materials during cooling, and the voids were consistent with the Kirkendall effect. The work will lay an important foundation for welding and joining of aluminum and steel, especially for fabrication of Al-Fe clad materials.
基金Project (2010DFA51650) supported by the Ministry of Science and Technology of China
文摘Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering conditions were evaluated by various techniques.The results reveal that when the sintering temperature is above the melting point of aluminum,the self-propagating high-temperature synthesis reaction occurs between Ti and Al,and forms various phases of Ti-based solid solutions including α-Ti Ti3Al,TiAl,TiAl2 and α-Ti including TiAl3,etc.When the sintering time increased,Ti-based solid solution,TiAl2 and TiAl3 disappeared gradually,and the sheet containing Ti3Al and TiAl phases in a multilayered structure formed finally.A lot of voids were also observed in the sintered structures,which were caused by the melting Al,Kirkendall effect and the difference of molar volumes between reactants and products.The voids were eliminated and a dense sample was obtained by the following hot press.