This paper presents a non-autonomous hyper-chaotic system, which is formed by adding a periodic driving signal to a four-dimensional chaotic model extended from the Lorenz system. The resulting non-autonomous hyper-ch...This paper presents a non-autonomous hyper-chaotic system, which is formed by adding a periodic driving signal to a four-dimensional chaotic model extended from the Lorenz system. The resulting non-autonomous hyper-chaotic system can display any dynamic behaviour among the periodic orbits, intermittency, chaos and hyper-chaos by controlling the frequency of the periodic signal. The phenomenon has been well demonstrated by numerical simulations, bifurcation analysis and electronic circuit realization. Moreover, the system is concrete evidence for the presence of Pomeau- Manneville Type-I intermittency and crisis-induced intermittency. The emergence of a different type of intermittency is similarly subjected to the frequency of periodic forcing. By statistical analysis, power scaling laws consisting in different intermittency are obtained for the lifetime in the laminar state between burst states.展开更多
Chaos synchronization of coupled nonlinear systems is ubiquitous in nature and science. Dynamic behaviors of coupled ring and linear arrays of unidirectionally coupled Lorenz oscillators are studied numerically. We fi...Chaos synchronization of coupled nonlinear systems is ubiquitous in nature and science. Dynamic behaviors of coupled ring and linear arrays of unidirectionally coupled Lorenz oscillators are studied numerically. We find that chaos synchronization in circular arrays of chaotic systems can occur through the on off intermittent synchronization with a power law distribution of laminar phases. And in the coupled ring and linear array it is found that the chaotic rotating waves generated from the ring propagate with spatial periodic synchronization along the linear array.展开更多
A stroboscopic map for voltage-controlled single ended primary inductor converter (SEPIC) with pulse width modulation (PWM) is presented, where low-frequency oscillating phenomena such as quasi-periodic and interm...A stroboscopic map for voltage-controlled single ended primary inductor converter (SEPIC) with pulse width modulation (PWM) is presented, where low-frequency oscillating phenomena such as quasi-periodic and intermittent quasi-periodic bifurcations occurring in the system are captured by numerical and experimental methods. According to bifurcation diagrams and nonlinear dynamical theory, the characteristics of the low-frequency oscillation and the mechanism for the appearance of the low-frequency oscillation are investigated. It is shown that as the controller parameter varies, the change in the conduction mode takes place from the continuous conduction mode (CCM) under the originally stable period one and high periodic orbits to the intermittent changes between CCM and discontinuous conduction mode (DCM), which may be related to the losing stability of the system and brought the system to exhibiting low-frequency oscillating behaviour in the time domain. Moreover, the occurrence of the intermittent quasi-periodic oscillation reflects that the system undergoes a Neimark-Sacker bifurcation.展开更多
A sequence of periodic attractors has been observed in a two-dimensional discontinuous map, which canbe considered as a model of impact oscillator. The so-called 'transfer number', which is defined as the mean...A sequence of periodic attractors has been observed in a two-dimensional discontinuous map, which canbe considered as a model of impact oscillator. The so-called 'transfer number', which is defined as the mean numberof transfer from non-impact state to impact state per iteration, is locked onto a lot of rational values to form a curveconsisting of many steps. Our numerical investigation confirms that every step is confined by conditions created by thecollision between the periodic orbit and the discontinuous boundary of the system. After the last collision the systemshows a chaotic motion with intermittent characteristics. Therefore the staircase can be addressed as a 'prelude staircaseto type V intermittency'. The similar phenomenon has also been observed in a model of electric circuit. These resultsof our study suggest that this kind of staircases is common in two (or even higher) dimensional discontinuous maps.展开更多
In this article, we study the nonlinear stochastic heat equation in the spatial domain R^d subject to a Gaussian noise which is white in time and colored in space. The spatial correlation can be any symmetric, nonnega...In this article, we study the nonlinear stochastic heat equation in the spatial domain R^d subject to a Gaussian noise which is white in time and colored in space. The spatial correlation can be any symmetric, nonnegative and nonnegative-definite function that satisfies Dalang's condition. We establish the existence and uniqueness of a random field solution starting from measure-valued initial data. We find the upper and lower bounds for the second moment. With these moment bounds, we first establish some necessary and sufficient conditions for the phase transition of the moment Lyapunov exponents, which extends the classical results from the stochastic heat equation on Z^d to that on R^d.Then, we prove a localization result for the intermittency fronts, which extends results by Conus and Khoshnevisan [9] from one space dimension to higher space dimension. The linear case has been recently proved by Huang et al [17] using different techniques.展开更多
Both the velocity and temperature measurements taken in turbulent Rayleigh-B'enard convection experiments have been analyzed. It is found that both the velocity and temperature fluctuations are intermittent and ca...Both the velocity and temperature measurements taken in turbulent Rayleigh-B'enard convection experiments have been analyzed. It is found that both the velocity and temperature fluctuations are intermittent and can be well-described by the She-Leveque hierarchical structure. A positive correlation between the vertical velocity and the temperature differences is found both at the center, near the sidewall and near the bottom of the convection cell, supporting that buoyancy is significant in the Bolgiano regime. Moreover, the intermittent nature of the temperature fluctuations in the Bolgiano regime can be attributted to the variations in the temperature dissipation rate. However, the relations between the velocity and temperature structure functions and their correlations implied by the Bolgiano-Obukhov scaling are not supported by experimental measurements.展开更多
The intermittency effect has been studied for an interaction of 3.7 A GeV ^16O with emulsion using the distributions of both the pseudorapidity intervals and the azimuthal angle intervals of the shower particles emitt...The intermittency effect has been studied for an interaction of 3.7 A GeV ^16O with emulsion using the distributions of both the pseudorapidity intervals and the azimuthal angle intervals of the shower particles emitted in a central rapidity region. The scaled factorial moments, reduced scaled factorial moments and multifractal moments as functions of the bin size in pseudorapidity and in azimuthal angle have been calculated and have revealed the presence of an intermittent behaviour which may be due to the random cascading property of the reaction. The anomalous fractal dimension has been found to increase with the increase of rank of the moment.展开更多
Through a systematically developed theory,we demonstrate that the motion of Instanton identified in Zhang et al(2017 Phys.Plasmas 24122304)is highly correlated to the intermittent excitation and propagation of geodesi...Through a systematically developed theory,we demonstrate that the motion of Instanton identified in Zhang et al(2017 Phys.Plasmas 24122304)is highly correlated to the intermittent excitation and propagation of geodesic acoustic mode(GAM)that is observed in tokamaks.While many numerical simulations have observed the phenomena,it is the first theory that reveals the physical mechanism behind GAM intermittent excitation and propagation.The preceding work is based on the micro-turbulence associated with toroidal ion temperature gradient mode,and slab-based phenomenological model of zonal flow.When full toroidal effect is introduced into the system,two branches of zonal flow emerge:the torus-modified low frequency zonal flow(TLFZF),and GAM,necessitating a unified exploration of GAM and TLFZF.Indeed,we observe that the transition from the Caviton to Instanton is triggered by a rapid zero-crossing of radial group velocity of drift wave and is found to be strongly correlated with the GAM onset.Many features peculiar to intermittent GAMs,observed in real machines,are thus identified in the numerical experiment.The results will be displayed in figures and in a movie;first for single central rational surface,and then with coupled multiple central rational surfaces.The periodic bursting first shown disappears as being replaced by irregular one,more similar to the intermittent characteristics observed in GAM experiments.展开更多
In this paper, one-state on-off intermittency and two-state on-off intermittency are generated in two five- dimensional continuum systems respectively. In each system, a two-dimensional subsystem is driven by the Ross...In this paper, one-state on-off intermittency and two-state on-off intermittency are generated in two five- dimensional continuum systems respectively. In each system, a two-dimensional subsystem is driven by the Rossler chaotic system. The parameter conditions under which the on-off intermittency occurs are discussed in detail. The statistical property of the intermittency is investigated. It is shown that the distribution of the laminar phase duration time follows a power law with an exponent of -3/2, which is a signature of on-off intermittency. Moreover, the phenomenon of intermingled basins is observed when attractors in the two symmetric invariant subspaces are stable. We provide an effective way to generate on-off intermittency based on a chaotic system, which is important for application and theoretical study.展开更多
To improve the understanding of the turbulence intermittency, a detailed investigation of the intermittency of the density fluctuations has been performed in the boundary of J-TEXT. The intermittency of the density fl...To improve the understanding of the turbulence intermittency, a detailed investigation of the intermittency of the density fluctuations has been performed in the boundary of J-TEXT. The intermittency of the density fluctuations and its influence on the radial transport are reported. The probability distribution functions of the density fluctuations are not scale-invariant, being inconsistent with the self-organized criticality hypothesis. The underlying dynamics of the intermittency are detected using the quiet-time statistical method. The probability distribution function of the quiet times shows double-power-law regions, indicating the existence of correlations between the successive burst events.展开更多
This paper investigates the impact of the intermittency of the photovoltaic (PV) power plants on the electric grid frequency management and the consequences that can occur. To meet these purposes, three years data of ...This paper investigates the impact of the intermittency of the photovoltaic (PV) power plants on the electric grid frequency management and the consequences that can occur. To meet these purposes, three years data of the Senegalese grid frequency are used, combined with three PV power plants data since their starting-up. Using these data, we analyzed two days of heavily disturbed operation of the Senegalese grid in order to emphasize the real impact of the presence of PV power plants on the electrical grid. Our study has highlighted that how the intermittency of photovoltaic power plants affects frequency management. It obviously appears that the PV production curves follow the irradiation variations. Instantaneous variations of PV production make it difficult to manage the grid frequency leading to more frequent load shedding as we have shown with the data after the commissioning of the PV power plants. We also estimate the power then energy losses during the load shedding induced by the PV integration on the power grid by comparing a period corresponding to one month before (February 2017) and one month after (February 2018) the integration of variable PV production.展开更多
Fluorescence intermittent dynamics of single quantum emitters in monolayer WSe2 are investigated via measuring speetrally resolved time traces and time-dependent fluorescence intensity trajectories. Analysis of fluore...Fluorescence intermittent dynamics of single quantum emitters in monolayer WSe2 are investigated via measuring speetrally resolved time traces and time-dependent fluorescence intensity trajectories. Analysis of fluorescence trajectories and spectral shifting reveal a correlation between A model of an inverse power law can be used to understand the fluorescence intermittency and spectral diffusion the observed blinking dynamics.展开更多
A new extendable method for the simulation of atmospheric wave-fronts with turbulence intermittency is reported. The purpose is to generate simulations consistent with the distributions observed for the turbulence par...A new extendable method for the simulation of atmospheric wave-fronts with turbulence intermittency is reported. The purpose is to generate simulations consistent with the distributions observed for the turbulence parameters and the seeing, not available with standard methods. The intermittency is included by entering log-normal distributed arrays for the Fried parameter and the spatial coherence outer scale length into an extended form of the phase spectrum. The method is tested on large samples of simulated long-exposure point-source images. The tests show the agreement of the simulations with literature data. The simulations show that the intermittency affects negligibly the long-term median image size but breaks the symmetry of the wave-front phase spectrum, scatters the phase structure function and changes the image profile.展开更多
The method of scaled factorial moments is used to study the fluctuations offragment-size distribution based on the quantum molecular dynamics model.From thecalculation of <sup>197</sup>Au(200 MeV/nucleon...The method of scaled factorial moments is used to study the fluctuations offragment-size distribution based on the quantum molecular dynamics model.From thecalculation of <sup>197</sup>Au(200 MeV/nucleon)+<sup>197</sup>Au central collision system,an intermit-tent pattern of fluctuations is found.In particular,the critical behavior is preliminarilydiscussed.展开更多
In this study,the characteristics of turbulence transport and intermittency and the evolutionary mechanisms were studied in different pollution stages of heavy haze weather from December 2016 to January 2017 in the Be...In this study,the characteristics of turbulence transport and intermittency and the evolutionary mechanisms were studied in different pollution stages of heavy haze weather from December 2016 to January 2017 in the Beijing area using the method developed by Ren et al.(2019)as the automatic identification of atmospheric spectral gaps and the reconstruction of atmospheric turbulence sequences.The results reveal that turbulence intermittency is the strongest in the cumulative stage(CS)of heavy haze weather,followed by in the transport stage(TS),and it is the weakest in the dissipation stage(DS).During the development and accumulation of haze pollution,buoyancy contributes negatively to turbulent kinetic energy(TKE),and horizontal wind speed is low.The classical turbulent motion is often affected by submesoscale motion.As a result,the calculation results of turbulence parameters are affected by submesoscale motion,which causes intensified turbulence intermittency.During the dissipation of pollution,the downward momentum transfer induced by low-level jets provides kinetic energy for turbulent motion in the near surface layer.The turbulent mixing effect is enhanced,and intermittency is weakened.Due to the intermittency of atmospheric turbulence,turbulence parameters calculated from the original fluctuation of meteorological elements may be overestimated.The overestimation of turbulence parameters in the CS is the strongest,followed by the TS,and the DS is the weakest.The overestimation of turbulent fluxes results in an overestimation of atmospheric dissipation capability that may cause an underestimation of pollutant concentrations in the numerical simulations of air quality.展开更多
Due to undesirable interference via unintended coupling paths, switching converters may exhibit complex intermittency, which appears as a form of bifurcation undergoing regular operation, subharmonics, and chaos order...Due to undesirable interference via unintended coupling paths, switching converters may exhibit complex intermittency, which appears as a form of bifurcation undergoing regular operation, subharmonics, and chaos orderly and repeatedly for a long period of time. Such intermittent operation, being an unwanted operating state, should normally be avoided in power converters. This paper expounds the mechanism and conditions for the emergence of intermittency in a common current-mode controlled Boost converter. It is found that interference at frequencies near the switching frequency or its rational multiples may induce intermittent operation. The strengths and frequencies of the interfering signals determine the type and period of intermittency. The problem is analyzed by transforming the time-bifurcation analysis to a conventional parameter-bifurcation analysis. Based on this transformation, intermittency can be investigated from the bifurcation control viewpoint. Furthermore, the critical circuit parameter conditions for the emergence of intermittency can be predicted and compared with those from circuit simulation.展开更多
The characteristics of atmospheric media influence the propagation of laser beams, leading to a variety of optical turbulence effects. The strength of optical turbulence is measured by the refractive index structure p...The characteristics of atmospheric media influence the propagation of laser beams, leading to a variety of optical turbulence effects. The strength of optical turbulence is measured by the refractive index structure parameter Cn, and the optical turbulence effects are mainly governed by the distribution of C2n on the propagation path. Observa- tions have revealed that C2n varies with height,展开更多
An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease prog...An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease progression,demonstrating the need for novel approaches in PD.Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease.However,the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown.The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling.Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test.Immunoblot,quantitative reverse transcription polymerase chain reaction,immunohistochemistry,and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen.Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals.A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen.Treatment with intermittent theta burst stimulation began 7 days after the lesion,coinciding with the onset of motor symptoms.After treatment with prolonged intermittent theta burst stimulation,complete motor recovery was observed.This improvement was accompanied by downregulation of the e N/CD73-A_(2A)R pathway and a return to physiological levels of A_(1)R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation.Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A_(1)R and elevated the expression of A_(2A)R.Intermittent theta burst stimulation reversed these effects by restoring the abundances of A_(1)R and A_(2A)R to control levels.The shift in ARs expression likely restored the balance between dopamine-adenosine signaling,ultimately leading to the recovery of motor control.展开更多
In recent years, interest of the study on multiparticle production is mainly concentrated on the factorial moments in narrow rapidity windows. It has been suggested by Bialas and Peschanski that by using factorial mom...In recent years, interest of the study on multiparticle production is mainly concentrated on the factorial moments in narrow rapidity windows. It has been suggested by Bialas and Peschanski that by using factorial moments the statistical fluctuations in multiparticle production can be eliminated, so as to show up the dynamical ones. The slope of the logarithm of factorial moments versus that of the inverse bin width as the latter tends to展开更多
In gas turbine engines, laminar-turbulent transition occurs. However, generally, the turbulence models to describe such transition results in too early and too short transition. Combining a turbulence model with a des...In gas turbine engines, laminar-turbulent transition occurs. However, generally, the turbulence models to describe such transition results in too early and too short transition. Combining a turbulence model with a description of intermittency, i.e. the fraction of time the flow is turbulent during the transition phase, can improve it. By letting grow the intermittency from zero to unity, start and evolution of transition can be imposed. In this paper, a method where a dynamic equation of intermittency combining with a two-equation k-ωturbulence model is described. This intermittency factor is a premultiplicator of the turbulent viscosity computed by the turbulence model. Following a suggestion by Menter et al.[1], the start of transition is computed based on local variables.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant Nos 60774088 and 10772135)the Program for New Century Excellent Talents in University of China(NCET)+1 种基金the Foundation of the Application Base and Frontier Technology Research Project of Tianjin of China(Grant No 08JCZDJC21900)the Science and Technology Research Key Project of Education Ministry of China(Grant No 107024)
文摘This paper presents a non-autonomous hyper-chaotic system, which is formed by adding a periodic driving signal to a four-dimensional chaotic model extended from the Lorenz system. The resulting non-autonomous hyper-chaotic system can display any dynamic behaviour among the periodic orbits, intermittency, chaos and hyper-chaos by controlling the frequency of the periodic signal. The phenomenon has been well demonstrated by numerical simulations, bifurcation analysis and electronic circuit realization. Moreover, the system is concrete evidence for the presence of Pomeau- Manneville Type-I intermittency and crisis-induced intermittency. The emergence of a different type of intermittency is similarly subjected to the frequency of periodic forcing. By statistical analysis, power scaling laws consisting in different intermittency are obtained for the lifetime in the laminar state between burst states.
文摘Chaos synchronization of coupled nonlinear systems is ubiquitous in nature and science. Dynamic behaviors of coupled ring and linear arrays of unidirectionally coupled Lorenz oscillators are studied numerically. We find that chaos synchronization in circular arrays of chaotic systems can occur through the on off intermittent synchronization with a power law distribution of laminar phases. And in the coupled ring and linear array it is found that the chaotic rotating waves generated from the ring propagate with spatial periodic synchronization along the linear array.
基金Project supported by the Natural Science Foundation of Ningxia Autonomous Region,China(Grant No.NZ0954)
文摘A stroboscopic map for voltage-controlled single ended primary inductor converter (SEPIC) with pulse width modulation (PWM) is presented, where low-frequency oscillating phenomena such as quasi-periodic and intermittent quasi-periodic bifurcations occurring in the system are captured by numerical and experimental methods. According to bifurcation diagrams and nonlinear dynamical theory, the characteristics of the low-frequency oscillation and the mechanism for the appearance of the low-frequency oscillation are investigated. It is shown that as the controller parameter varies, the change in the conduction mode takes place from the continuous conduction mode (CCM) under the originally stable period one and high periodic orbits to the intermittent changes between CCM and discontinuous conduction mode (DCM), which may be related to the losing stability of the system and brought the system to exhibiting low-frequency oscillating behaviour in the time domain. Moreover, the occurrence of the intermittent quasi-periodic oscillation reflects that the system undergoes a Neimark-Sacker bifurcation.
文摘A sequence of periodic attractors has been observed in a two-dimensional discontinuous map, which canbe considered as a model of impact oscillator. The so-called 'transfer number', which is defined as the mean numberof transfer from non-impact state to impact state per iteration, is locked onto a lot of rational values to form a curveconsisting of many steps. Our numerical investigation confirms that every step is confined by conditions created by thecollision between the periodic orbit and the discontinuous boundary of the system. After the last collision the systemshows a chaotic motion with intermittent characteristics. Therefore the staircase can be addressed as a 'prelude staircaseto type V intermittency'. The similar phenomenon has also been observed in a model of electric circuit. These resultsof our study suggest that this kind of staircases is common in two (or even higher) dimensional discontinuous maps.
基金supported by the National Research Foundation of Korea (NRF-2017R1C1B1005436)the TJ Park Science Fellowship of POSCO TJ Park Foundation
文摘In this article, we study the nonlinear stochastic heat equation in the spatial domain R^d subject to a Gaussian noise which is white in time and colored in space. The spatial correlation can be any symmetric, nonnegative and nonnegative-definite function that satisfies Dalang's condition. We establish the existence and uniqueness of a random field solution starting from measure-valued initial data. We find the upper and lower bounds for the second moment. With these moment bounds, we first establish some necessary and sufficient conditions for the phase transition of the moment Lyapunov exponents, which extends the classical results from the stochastic heat equation on Z^d to that on R^d.Then, we prove a localization result for the intermittency fronts, which extends results by Conus and Khoshnevisan [9] from one space dimension to higher space dimension. The linear case has been recently proved by Huang et al [17] using different techniques.
文摘Both the velocity and temperature measurements taken in turbulent Rayleigh-B'enard convection experiments have been analyzed. It is found that both the velocity and temperature fluctuations are intermittent and can be well-described by the She-Leveque hierarchical structure. A positive correlation between the vertical velocity and the temperature differences is found both at the center, near the sidewall and near the bottom of the convection cell, supporting that buoyancy is significant in the Bolgiano regime. Moreover, the intermittent nature of the temperature fluctuations in the Bolgiano regime can be attributted to the variations in the temperature dissipation rate. However, the relations between the velocity and temperature structure functions and their correlations implied by the Bolgiano-Obukhov scaling are not supported by experimental measurements.
基金Project supported by the National Natural Science Foundation of China (Grant No 10475054), the Key Program of Ministry of Education, China (Grant No 205026), the Natural Science Foundation of Shanxl Province, China (Grant No 20021007) and Shanxi Provincial Foundation for Returned Scholars, China (Grant No 20031046). We are thankful to Lund University in Sweden plates. Professor 0tterlund I of for supplying the emulsion
文摘The intermittency effect has been studied for an interaction of 3.7 A GeV ^16O with emulsion using the distributions of both the pseudorapidity intervals and the azimuthal angle intervals of the shower particles emitted in a central rapidity region. The scaled factorial moments, reduced scaled factorial moments and multifractal moments as functions of the bin size in pseudorapidity and in azimuthal angle have been calculated and have revealed the presence of an intermittent behaviour which may be due to the random cascading property of the reaction. The anomalous fractal dimension has been found to increase with the increase of rank of the moment.
基金supported in part by the National MCF Energy R&D Program of China(Nos.2018YFE0311200 and 2017YFE0301204)National Natural Science Foundation of China(Nos.U1967206,11975231,11805203 and 11775222)+1 种基金Key Research Program of Frontier Science CAS(QYZDB-SSW-SYS004)the US Dept.of Energy(No.DE-FG02-04ER-54742)。
文摘Through a systematically developed theory,we demonstrate that the motion of Instanton identified in Zhang et al(2017 Phys.Plasmas 24122304)is highly correlated to the intermittent excitation and propagation of geodesic acoustic mode(GAM)that is observed in tokamaks.While many numerical simulations have observed the phenomena,it is the first theory that reveals the physical mechanism behind GAM intermittent excitation and propagation.The preceding work is based on the micro-turbulence associated with toroidal ion temperature gradient mode,and slab-based phenomenological model of zonal flow.When full toroidal effect is introduced into the system,two branches of zonal flow emerge:the torus-modified low frequency zonal flow(TLFZF),and GAM,necessitating a unified exploration of GAM and TLFZF.Indeed,we observe that the transition from the Caviton to Instanton is triggered by a rapid zero-crossing of radial group velocity of drift wave and is found to be strongly correlated with the GAM onset.Many features peculiar to intermittent GAMs,observed in real machines,are thus identified in the numerical experiment.The results will be displayed in figures and in a movie;first for single central rational surface,and then with coupled multiple central rational surfaces.The periodic bursting first shown disappears as being replaced by irregular one,more similar to the intermittent characteristics observed in GAM experiments.
文摘In this paper, one-state on-off intermittency and two-state on-off intermittency are generated in two five- dimensional continuum systems respectively. In each system, a two-dimensional subsystem is driven by the Rossler chaotic system. The parameter conditions under which the on-off intermittency occurs are discussed in detail. The statistical property of the intermittency is investigated. It is shown that the distribution of the laminar phase duration time follows a power law with an exponent of -3/2, which is a signature of on-off intermittency. Moreover, the phenomenon of intermingled basins is observed when attractors in the two symmetric invariant subspaces are stable. We provide an effective way to generate on-off intermittency based on a chaotic system, which is important for application and theoretical study.
基金supported in part by the National Basic Research Program of China (Grant No. 2008CB717805)the National Natural Science Foundation of China (Grant No. 50907029)
文摘To improve the understanding of the turbulence intermittency, a detailed investigation of the intermittency of the density fluctuations has been performed in the boundary of J-TEXT. The intermittency of the density fluctuations and its influence on the radial transport are reported. The probability distribution functions of the density fluctuations are not scale-invariant, being inconsistent with the self-organized criticality hypothesis. The underlying dynamics of the intermittency are detected using the quiet-time statistical method. The probability distribution function of the quiet times shows double-power-law regions, indicating the existence of correlations between the successive burst events.
文摘This paper investigates the impact of the intermittency of the photovoltaic (PV) power plants on the electric grid frequency management and the consequences that can occur. To meet these purposes, three years data of the Senegalese grid frequency are used, combined with three PV power plants data since their starting-up. Using these data, we analyzed two days of heavily disturbed operation of the Senegalese grid in order to emphasize the real impact of the presence of PV power plants on the electrical grid. Our study has highlighted that how the intermittency of photovoltaic power plants affects frequency management. It obviously appears that the PV production curves follow the irradiation variations. Instantaneous variations of PV production make it difficult to manage the grid frequency leading to more frequent load shedding as we have shown with the data after the commissioning of the PV power plants. We also estimate the power then energy losses during the load shedding induced by the PV integration on the power grid by comparing a period corresponding to one month before (February 2017) and one month after (February 2018) the integration of variable PV production.
基金Supported by the National Basic Research Program of China under Grant No 2013CB922304the National Natural Science Foundation of China under Grant Nos 11474275,61674135 and 91536101
文摘Fluorescence intermittent dynamics of single quantum emitters in monolayer WSe2 are investigated via measuring speetrally resolved time traces and time-dependent fluorescence intensity trajectories. Analysis of fluorescence trajectories and spectral shifting reveal a correlation between A model of an inverse power law can be used to understand the fluorescence intermittency and spectral diffusion the observed blinking dynamics.
文摘A new extendable method for the simulation of atmospheric wave-fronts with turbulence intermittency is reported. The purpose is to generate simulations consistent with the distributions observed for the turbulence parameters and the seeing, not available with standard methods. The intermittency is included by entering log-normal distributed arrays for the Fried parameter and the spatial coherence outer scale length into an extended form of the phase spectrum. The method is tested on large samples of simulated long-exposure point-source images. The tests show the agreement of the simulations with literature data. The simulations show that the intermittency affects negligibly the long-term median image size but breaks the symmetry of the wave-front phase spectrum, scatters the phase structure function and changes the image profile.
基金The project supported by the National Natural Science Foundation of China and by LWTZ-1298 of Chinese Academy of Sciences.
文摘The method of scaled factorial moments is used to study the fluctuations offragment-size distribution based on the quantum molecular dynamics model.From thecalculation of <sup>197</sup>Au(200 MeV/nucleon)+<sup>197</sup>Au central collision system,an intermit-tent pattern of fluctuations is found.In particular,the critical behavior is preliminarilydiscussed.
基金supported by the National Natural Science Foundation of China (Grant No. 41544216)the National Key R & D Program of China (Grant Nos. 2017YFC0209600 & 2016YFC0203300)
文摘In this study,the characteristics of turbulence transport and intermittency and the evolutionary mechanisms were studied in different pollution stages of heavy haze weather from December 2016 to January 2017 in the Beijing area using the method developed by Ren et al.(2019)as the automatic identification of atmospheric spectral gaps and the reconstruction of atmospheric turbulence sequences.The results reveal that turbulence intermittency is the strongest in the cumulative stage(CS)of heavy haze weather,followed by in the transport stage(TS),and it is the weakest in the dissipation stage(DS).During the development and accumulation of haze pollution,buoyancy contributes negatively to turbulent kinetic energy(TKE),and horizontal wind speed is low.The classical turbulent motion is often affected by submesoscale motion.As a result,the calculation results of turbulence parameters are affected by submesoscale motion,which causes intensified turbulence intermittency.During the dissipation of pollution,the downward momentum transfer induced by low-level jets provides kinetic energy for turbulent motion in the near surface layer.The turbulent mixing effect is enhanced,and intermittency is weakened.Due to the intermittency of atmospheric turbulence,turbulence parameters calculated from the original fluctuation of meteorological elements may be overestimated.The overestimation of turbulence parameters in the CS is the strongest,followed by the TS,and the DS is the weakest.The overestimation of turbulent fluxes results in an overestimation of atmospheric dissipation capability that may cause an underestimation of pollutant concentrations in the numerical simulations of air quality.
基金the National Natural Science Foundation of China (Grant Nos. 60402001 and 60672023)the Science and Technological Fund of Anhui Province for Outstanding Youth (Grant No. 08040106807)
文摘Due to undesirable interference via unintended coupling paths, switching converters may exhibit complex intermittency, which appears as a form of bifurcation undergoing regular operation, subharmonics, and chaos orderly and repeatedly for a long period of time. Such intermittent operation, being an unwanted operating state, should normally be avoided in power converters. This paper expounds the mechanism and conditions for the emergence of intermittency in a common current-mode controlled Boost converter. It is found that interference at frequencies near the switching frequency or its rational multiples may induce intermittent operation. The strengths and frequencies of the interfering signals determine the type and period of intermittency. The problem is analyzed by transforming the time-bifurcation analysis to a conventional parameter-bifurcation analysis. Based on this transformation, intermittency can be investigated from the bifurcation control viewpoint. Furthermore, the critical circuit parameter conditions for the emergence of intermittency can be predicted and compared with those from circuit simulation.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant Nos.41205023 and 41375017
文摘The characteristics of atmospheric media influence the propagation of laser beams, leading to a variety of optical turbulence effects. The strength of optical turbulence is measured by the refractive index structure parameter Cn, and the optical turbulence effects are mainly governed by the distribution of C2n on the propagation path. Observa- tions have revealed that C2n varies with height,
基金supported by a grant from Ministry of Science,Technological Development and Innovation,Serbia,No.451-03-68/2022-14/200178(to NN)University of Defence,No.MFVMA/02/22-24(to MN)。
文摘An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease progression,demonstrating the need for novel approaches in PD.Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease.However,the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown.The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling.Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test.Immunoblot,quantitative reverse transcription polymerase chain reaction,immunohistochemistry,and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen.Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals.A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen.Treatment with intermittent theta burst stimulation began 7 days after the lesion,coinciding with the onset of motor symptoms.After treatment with prolonged intermittent theta burst stimulation,complete motor recovery was observed.This improvement was accompanied by downregulation of the e N/CD73-A_(2A)R pathway and a return to physiological levels of A_(1)R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation.Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A_(1)R and elevated the expression of A_(2A)R.Intermittent theta burst stimulation reversed these effects by restoring the abundances of A_(1)R and A_(2A)R to control levels.The shift in ARs expression likely restored the balance between dopamine-adenosine signaling,ultimately leading to the recovery of motor control.
基金Project supported in part by the National Natural Science Foundation of China.
文摘In recent years, interest of the study on multiparticle production is mainly concentrated on the factorial moments in narrow rapidity windows. It has been suggested by Bialas and Peschanski that by using factorial moments the statistical fluctuations in multiparticle production can be eliminated, so as to show up the dynamical ones. The slope of the logarithm of factorial moments versus that of the inverse bin width as the latter tends to
文摘In gas turbine engines, laminar-turbulent transition occurs. However, generally, the turbulence models to describe such transition results in too early and too short transition. Combining a turbulence model with a description of intermittency, i.e. the fraction of time the flow is turbulent during the transition phase, can improve it. By letting grow the intermittency from zero to unity, start and evolution of transition can be imposed. In this paper, a method where a dynamic equation of intermittency combining with a two-equation k-ωturbulence model is described. This intermittency factor is a premultiplicator of the turbulent viscosity computed by the turbulence model. Following a suggestion by Menter et al.[1], the start of transition is computed based on local variables.